Header

UZH-Logo

Maintenance Infos

Context Data Categories and Privacy Model for Mobile Data Collection Apps


Beierle, Felix; Tran, Vinh Thuy; Allemand, Mathias; Neff, Patrick; Schlee, Winfried; Probst, Thomas; Pryss, Rüdiger; Zimmermann, Johannes (2018). Context Data Categories and Privacy Model for Mobile Data Collection Apps. Procedia Computer Science, 134:18-25.

Abstract

Context-aware applications stemming from diverse fields like mobile health, recommender systems, and mobile commerce potentially benefit from knowing aspects of the user’s personality. As filling out personality questionnaires is tedious, we propose the prediction of the user’s personality from smartphone sensor and usage data. In order to collect data for researching the relationship between smartphone data and personality, we developed the Android app TYDR (Track Your Daily Routine) which tracks smart-phone data and utilizes psychometric personality questionnaires. With TYDR, we track a larger variety of smartphone data than similar existing apps, including metadata on notifications, photos taken, and music played back by the user. For the development of TYDR, we introduce a general context data model consisting of four categories that focus on the user’s different types of interactions with the smartphone: physical conditions and activity, device status and usage, core functions usage, and app usage. On top of this, we develop the privacy model PM-MoDaC specifically for apps related to the collection of mobile data, consisting of nine proposed privacy measures. We present the implementation of all of those measures in TYDR. Although the utilization of the user’s personality based on the usage of his or her smartphone is a challenging endeavor, it seems to be a promising approach for various types of context-aware mobile applications.

Abstract

Context-aware applications stemming from diverse fields like mobile health, recommender systems, and mobile commerce potentially benefit from knowing aspects of the user’s personality. As filling out personality questionnaires is tedious, we propose the prediction of the user’s personality from smartphone sensor and usage data. In order to collect data for researching the relationship between smartphone data and personality, we developed the Android app TYDR (Track Your Daily Routine) which tracks smart-phone data and utilizes psychometric personality questionnaires. With TYDR, we track a larger variety of smartphone data than similar existing apps, including metadata on notifications, photos taken, and music played back by the user. For the development of TYDR, we introduce a general context data model consisting of four categories that focus on the user’s different types of interactions with the smartphone: physical conditions and activity, device status and usage, core functions usage, and app usage. On top of this, we develop the privacy model PM-MoDaC specifically for apps related to the collection of mobile data, consisting of nine proposed privacy measures. We present the implementation of all of those measures in TYDR. Although the utilization of the user’s personality based on the usage of his or her smartphone is a challenging endeavor, it seems to be a promising approach for various types of context-aware mobile applications.

Statistics

Citations

Dimensions.ai Metrics
23 citations in Web of Science®
30 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

45 downloads since deposited on 20 Nov 2018
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Scopus Subject Areas:Physical Sciences > General Computer Science
Language:English
Date:1 January 2018
Deposited On:20 Nov 2018 11:05
Last Modified:04 Dec 2022 08:10
Publisher:Elsevier
ISSN:1877-0509
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.procs.2018.07.139
Project Information:
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)