Header

UZH-Logo

Maintenance Infos

Plasmodium-associated changes in human odor attract mosquitoes


Abstract

Malaria parasites (Plasmodium) can change the attractiveness of their vertebrate hosts to Anopheles vectors, leading to a greater number of vector-host contacts and increased transmission. Indeed, naturally Plasmodium-infected children have been shown to attract more mosquitoes than parasite-free children. Here, we demonstrate Plasmodium-induced increases in the attractiveness of skin odor in Kenyan children and reveal quantitative differences in the production of specific odor components in infected vs. parasite-free individuals. We found the aldehydes heptanal, octanal, and nonanal to be produced in greater amounts by infected individuals and detected by mosquito antennae. In behavioral experiments, we demonstrated that these, and other, Plasmodium-induced aldehydes enhanced the attractiveness of a synthetic odor blend mimicking "healthy" human odor. Heptanal alone increased the attractiveness of "parasite-free" natural human odor. Should the increased production of these aldehydes by Plasmodium-infected humans lead to increased mosquito biting in a natural setting, this would likely affect the transmission of malaria.

Abstract

Malaria parasites (Plasmodium) can change the attractiveness of their vertebrate hosts to Anopheles vectors, leading to a greater number of vector-host contacts and increased transmission. Indeed, naturally Plasmodium-infected children have been shown to attract more mosquitoes than parasite-free children. Here, we demonstrate Plasmodium-induced increases in the attractiveness of skin odor in Kenyan children and reveal quantitative differences in the production of specific odor components in infected vs. parasite-free individuals. We found the aldehydes heptanal, octanal, and nonanal to be produced in greater amounts by infected individuals and detected by mosquito antennae. In behavioral experiments, we demonstrated that these, and other, Plasmodium-induced aldehydes enhanced the attractiveness of a synthetic odor blend mimicking "healthy" human odor. Heptanal alone increased the attractiveness of "parasite-free" natural human odor. Should the increased production of these aldehydes by Plasmodium-infected humans lead to increased mosquito biting in a natural setting, this would likely affect the transmission of malaria.

Statistics

Citations

Dimensions.ai Metrics
16 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 22 Nov 2018
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Parasitology
04 Faculty of Medicine > Institute of Parasitology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
600 Technology
Uncontrolled Keywords:aldehydes; disease biomarkers; host attractiveness; malaria transmission; parasite–vector–host interactions
Language:English
Date:16 April 2018
Deposited On:22 Nov 2018 15:31
Last Modified:22 Nov 2018 15:31
Publisher:National Academy of Sciences
ISSN:0027-8424
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.1721610115
PubMed ID:29666273

Download

Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 1MB
View at publisher