Header

UZH-Logo

Maintenance Infos

Complex magnetic order in nickelate slabs


Abstract

Magnetic ordering phenomena have a profound influence on the macroscopic properties of correlated-electron materials, but their realistic prediction remains a formidable challenge. An archetypical example is the ternary nickel oxide system RNiO3 (R = rare earth), where the period-four magnetic order with proposals of collinear and non-collinear structures and the amplitude of magnetic moments on different Ni sublattices have been subjects of debate for decades1,2,3,4,5,6. Here we introduce an elementary model system—NdNiO3 slabs embedded in a non-magnetic NdGaO3 matrix—and use polarized resonant X-ray scattering (RXS) to show that both collinear and non-collinear magnetic structures can be realized, depending on the slab thickness. The crossover between both spin structures is correctly predicted by density functional theory and can be qualitatively understood in a low-energy spin model. We further demonstrate that the amplitude ratio of magnetic moments in neighbouring NiO6 octahedra can be accurately determined by RXS in combination with a correlated double cluster model. Targeted synthesis of model systems with controlled thickness and synergistic application of polarized RXS and ab initio theory thus provide new perspectives for research on complex magnetism, in analogy to two-dimensional materials created by exfoliation7.

Abstract

Magnetic ordering phenomena have a profound influence on the macroscopic properties of correlated-electron materials, but their realistic prediction remains a formidable challenge. An archetypical example is the ternary nickel oxide system RNiO3 (R = rare earth), where the period-four magnetic order with proposals of collinear and non-collinear structures and the amplitude of magnetic moments on different Ni sublattices have been subjects of debate for decades1,2,3,4,5,6. Here we introduce an elementary model system—NdNiO3 slabs embedded in a non-magnetic NdGaO3 matrix—and use polarized resonant X-ray scattering (RXS) to show that both collinear and non-collinear magnetic structures can be realized, depending on the slab thickness. The crossover between both spin structures is correctly predicted by density functional theory and can be qualitatively understood in a low-energy spin model. We further demonstrate that the amplitude ratio of magnetic moments in neighbouring NiO6 octahedra can be accurately determined by RXS in combination with a correlated double cluster model. Targeted synthesis of model systems with controlled thickness and synergistic application of polarized RXS and ab initio theory thus provide new perspectives for research on complex magnetism, in analogy to two-dimensional materials created by exfoliation7.

Statistics

Citations

Dimensions.ai Metrics
7 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 30 Nov 2018
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Uncontrolled Keywords:General Physics and Astronomy
Language:English
Date:1 November 2018
Deposited On:30 Nov 2018 15:34
Last Modified:15 Oct 2019 13:25
Publisher:Nature Publishing Group
ISSN:1745-2473
OA Status:Closed
Publisher DOI:https://doi.org/10.1038/s41567-018-0218-5

Download

Closed Access: Download allowed only for UZH members

Content: Published Version
Filetype: PDF - Registered users only
Size: 2MB
View at publisher