Header

UZH-Logo

Maintenance Infos

Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction


Tan, Q; Hillinger, S; van Blitterswijk, C A; Weder, W (2009). Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction. Interactive Cardiovascular and Thoracic Surgery, 8(1):27-30.

Abstract

In this study we tested the possibility of seeding chondrocytes into poly (ethylene glycol)-terephthalate-poly (butylene terephthalate) PEOT/PBT scaffold through an intra-scaffold medium flow and the impact of this continuous medium flow on subsequent chondrocyte-scaffold culture. Eight cubic PEOT/PBT co-polymers (1 cm(3)) were assigned into two groups. In the semi-dynamic seeding group a continuous medium flow was created inside the scaffolds by a pump system. Around six million chondrocytes were harvested each day, suspended in 1 ml medium and delivered onto the scaffold through the perfusion for a sequential five days. Traditional chondrocytes directly seeding and static culture method was performed as control. Scanning electron microscopy (SEM) and histology assessments were performed to evaluate the distribution of chondrocytes inside the scaffolds and MTT test was chosen to check cell vitality. SEM pictures and histology slices from the perfusion group showed a better three-dimensional cell growth and extensive cell distribution inside the scaffolds; while in the control group chondrocytes only dispersedly formed a monolayer on the surface of scaffolds. Accordingly, MTT results from the perfusion group were much higher than those from control group (0.123 vs. 0.067, P<0.01). Continuous medium perfusion inside PEOT/PBT scaffold effectively combines chondrocyte seeding and culture systems for the reconstruction of tissue engineered trachea.

Abstract

In this study we tested the possibility of seeding chondrocytes into poly (ethylene glycol)-terephthalate-poly (butylene terephthalate) PEOT/PBT scaffold through an intra-scaffold medium flow and the impact of this continuous medium flow on subsequent chondrocyte-scaffold culture. Eight cubic PEOT/PBT co-polymers (1 cm(3)) were assigned into two groups. In the semi-dynamic seeding group a continuous medium flow was created inside the scaffolds by a pump system. Around six million chondrocytes were harvested each day, suspended in 1 ml medium and delivered onto the scaffold through the perfusion for a sequential five days. Traditional chondrocytes directly seeding and static culture method was performed as control. Scanning electron microscopy (SEM) and histology assessments were performed to evaluate the distribution of chondrocytes inside the scaffolds and MTT test was chosen to check cell vitality. SEM pictures and histology slices from the perfusion group showed a better three-dimensional cell growth and extensive cell distribution inside the scaffolds; while in the control group chondrocytes only dispersedly formed a monolayer on the surface of scaffolds. Accordingly, MTT results from the perfusion group were much higher than those from control group (0.123 vs. 0.067, P<0.01). Continuous medium perfusion inside PEOT/PBT scaffold effectively combines chondrocyte seeding and culture systems for the reconstruction of tissue engineered trachea.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

1 download since deposited on 12 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Thoracic Surgery
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Surgery
Health Sciences > Pulmonary and Respiratory Medicine
Health Sciences > Cardiology and Cardiovascular Medicine
Language:English
Date:January 2009
Deposited On:12 Mar 2009 11:40
Last Modified:06 Oct 2023 07:08
Publisher:European Association of Cardio-Thoracic Surgery
ISSN:1569-9285
OA Status:Closed
Publisher DOI:https://doi.org/10.1510/icvts.2008.179804
PubMed ID:18550604