Header

UZH-Logo

Maintenance Infos

Infant multiple breath washout using a new commercially available device: Ready to replace the previous setup?


Kentgens, Anne-Christianne; Guidi, Marisa; Korten, Insa; Kohler, Lena; Binggeli, Severin; Singer, Florian; Latzin, Philipp; Anagnostopoulou, Pinelopi (2018). Infant multiple breath washout using a new commercially available device: Ready to replace the previous setup? Pediatric Pulmonology, 53(5):628-635.

Abstract

INTRODUCTION Multiple breath washout (MBW) is a sensitive test to measure lung volumes and ventilation inhomogeneity from infancy on. The commonly used setup for infant MBW, based on ultrasonic flowmeter, requires extensive signal processing, which may reduce robustness. A new setup may overcome some previous limitations but formal validation is lacking. AIM We assessed the feasibility of infant MBW testing with the new setup and compared functional residual capacity (FRC) values of the old and the new setup in vivo and in vitro. METHODS We performed MBW in four healthy infants and four infants with cystic fibrosis, as well as in a Plexiglas lung simulator using realistic lung volumes and breathing patterns, with the new (Exhalyzer D, Spiroware 3.2.0, Ecomedics) and the old setup (Exhalyzer D, WBreath 3.18.0, ndd) in random sequence. RESULTS The technical feasibility of MBW with the new device-setup was 100%. Intra-subject variability in FRC was low in both setups, but differences in FRC between the setups were considerable (mean relative difference 39.7%, range 18.9; 65.7, P = 0.008). Corrections of software settings decreased FRC differences (14.0%, -6.4; 42.3, P = 0.08). Results were confirmed in vitro. CONCLUSION MBW measurements with the new setup were feasible in infants. However, despite attempts to correct software settings, outcomes between setups were not interchangeable. Further work is needed before widespread application of the new setup can be recommended.

Abstract

INTRODUCTION Multiple breath washout (MBW) is a sensitive test to measure lung volumes and ventilation inhomogeneity from infancy on. The commonly used setup for infant MBW, based on ultrasonic flowmeter, requires extensive signal processing, which may reduce robustness. A new setup may overcome some previous limitations but formal validation is lacking. AIM We assessed the feasibility of infant MBW testing with the new setup and compared functional residual capacity (FRC) values of the old and the new setup in vivo and in vitro. METHODS We performed MBW in four healthy infants and four infants with cystic fibrosis, as well as in a Plexiglas lung simulator using realistic lung volumes and breathing patterns, with the new (Exhalyzer D, Spiroware 3.2.0, Ecomedics) and the old setup (Exhalyzer D, WBreath 3.18.0, ndd) in random sequence. RESULTS The technical feasibility of MBW with the new device-setup was 100%. Intra-subject variability in FRC was low in both setups, but differences in FRC between the setups were considerable (mean relative difference 39.7%, range 18.9; 65.7, P = 0.008). Corrections of software settings decreased FRC differences (14.0%, -6.4; 42.3, P = 0.08). Results were confirmed in vitro. CONCLUSION MBW measurements with the new setup were feasible in infants. However, despite attempts to correct software settings, outcomes between setups were not interchangeable. Further work is needed before widespread application of the new setup can be recommended.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Pediatrics, Perinatology and Child Health
Health Sciences > Pulmonary and Respiratory Medicine
Language:English
Date:May 2018
Deposited On:07 Dec 2018 09:36
Last Modified:29 Jul 2020 08:18
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1099-0496
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/ppul.23959
PubMed ID:29418075

Download

Full text not available from this repository.
View at publisher

Get full-text in a library