Header

UZH-Logo

Maintenance Infos

Exploiting multicompartment effects in triple-echo steady-state T2 mapping for fat fraction quantification


Liu, Dian; Steingoetter, Andreas; Curcic, Jelena; Kozerke, Sebastian (2018). Exploiting multicompartment effects in triple-echo steady-state T2 mapping for fat fraction quantification. Magnetic Resonance in Medicine, 79(1):423-429.

Abstract

PURPOSE: To investigate and exploit the effect of intravoxel off-resonance compartments in the triple-echo steady-state (TESS) sequence without fat suppression for T2 mapping and to leverage the results for fat fraction quantification. METHODS: In multicompartment tissue, where at least one compartment is excited off-resonance, the total signal exhibits periodic modulations as a function of echo time (TE). Simulated multicompartment TESS signals were synthesized at various TEs. Fat emulsion phantoms were prepared and scanned at the same TE combinations using TESS. In vivo knee data were obtained with TESS to validate the simulations. The multicompartment effect was exploited for fat fraction quantification in the stomach by acquiring TESS signals at two TE combinations. RESULTS: Simulated and measured multicompartment signal intensities were in good agreement. Multicompartment effects caused erroneous T2 offsets, even at low water-fat ratios. The choice of TE caused T2 variations of as much as 28% in cartilage. The feasibility of fat fraction quantification to monitor the decrease of fat content in the stomach during digestion is demonstrated. CONCLUSIONS: Intravoxel off-resonance compartments are a confounding factor for T2 quantification using TESS, causing errors that are dependent on the TE. At the same time, off-resonance effects may allow for efficient fat fraction mapping using steady-state imaging. Magn Reson Med 79:423-429, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Abstract

PURPOSE: To investigate and exploit the effect of intravoxel off-resonance compartments in the triple-echo steady-state (TESS) sequence without fat suppression for T2 mapping and to leverage the results for fat fraction quantification. METHODS: In multicompartment tissue, where at least one compartment is excited off-resonance, the total signal exhibits periodic modulations as a function of echo time (TE). Simulated multicompartment TESS signals were synthesized at various TEs. Fat emulsion phantoms were prepared and scanned at the same TE combinations using TESS. In vivo knee data were obtained with TESS to validate the simulations. The multicompartment effect was exploited for fat fraction quantification in the stomach by acquiring TESS signals at two TE combinations. RESULTS: Simulated and measured multicompartment signal intensities were in good agreement. Multicompartment effects caused erroneous T2 offsets, even at low water-fat ratios. The choice of TE caused T2 variations of as much as 28% in cartilage. The feasibility of fat fraction quantification to monitor the decrease of fat content in the stomach during digestion is demonstrated. CONCLUSIONS: Intravoxel off-resonance compartments are a confounding factor for T2 quantification using TESS, causing errors that are dependent on the TE. At the same time, off-resonance effects may allow for efficient fat fraction mapping using steady-state imaging. Magn Reson Med 79:423-429, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Statistics

Citations

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Uncontrolled Keywords:Radiology Nuclear Medicine and imaging
Language:English
Date:1 January 2018
Deposited On:07 Dec 2018 10:18
Last Modified:24 Sep 2019 23:55
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0740-3194
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/mrm.26680
PubMed ID:28342191

Download

Full text not available from this repository.
View at publisher

Get full-text in a library