Navigation auf zora.uzh.ch

Search

ZORA (Zurich Open Repository and Archive)

Ultra-thin occlusal veneers bonded to enamel and made of ceramic or hybrid materials exhibit load-bearing capacities not different from conventional restorations

Ioannidis, Alexis; Mühlemann, Sven; Özcan, Mutlu; Hüsler, Jürg; Hämmerle, Christoph H F; Benic, Goran I (2018). Ultra-thin occlusal veneers bonded to enamel and made of ceramic or hybrid materials exhibit load-bearing capacities not different from conventional restorations. Journal of the Mechanical Behavior of Biomedical Materials, 90:433-440.

Abstract

OBJECTIVES The objective of this study was to test whether or not the load-bearing capacity of occlusal veneers bonded to enamel and made of ceramic or hybrid materials does differ from those of porcelain-fused-to-metal or lithium disilicate glass ceramic crowns. MATERIAL AND METHODS In 80 human molars occlusal enamel was removed without extending into the dentin in order to mimic substance defects caused by attrition. The restorations were digitally designed at a standardized thickness of either 0.5 mm or 1.0 mm. For each thickness, 4 test groups were formed each including a different restorative material: "0.5-ZIR": 0.5 mm thick zirconia (Vita YZ HT); "1.0-ZIR": 1.0 mm thick zirconia (Vita YZ HT); "0.5-LDC": 0.5 mm thick lithium disilicate ceramic (IPS e.max Press); "1.0-LDC": 1.0 mm thick lithium disilicate ceramic (IPS e.max Press); "0.5-HYC": 0.5 mm thick PICN (Vita Enamic); "1.0-HYC": 1.0 mm thick PICN (Vita Enamic); "0.5-COC": 0.5 mm thick tooth shaded resin composite (Lava Ultimate) and "1.0-COC": 1.0 mm thick tooth shaded resin composite (Lava ultimate). Each group consists of 10 specimens. Two additional groups of 10 specimens each were used as controls and exhibited conventional crown preparations. In one group the crowns were made of lithium-disilicate ceramic ("CLD": IPS e.max CAD) and the other group consisted of porcelain-fused to metal crowns ("PFM"). All restorations were cemented onto the prepared teeth following the manufacturer's instruction of the corresponding luting cement. Subsequently, they were thermo-mechanically aged and then loaded until fracture. Load-bearing capacities (F) between the groups were compared applying the Kruskal-Wallis test (p < 0.05) and pairwise group comparisons using the Dunn's method. RESULTS Median values (and quartiles) for the load-bearing capacity amounted to (F) 2'407 (1'670; 2'490) N for the CLD group and to 2'033 (1'869; 2'445) N for the PFM group. For the 0.5 mm thick restorations F reached the highest median value in group 0.5-HYC 2'390 (1'355; 2'490) N, followed by 0.5-COC 2'200 (1'217; 2'492) N and 0.5-LDC 1'692 (1'324; 2'355) N. No results were obtained for group 0.5-ZIR due to the impracticability to fabricate ultra-thin specimens. The distribution of the values for the 1.0 mm thick restorations was 2'489 (2'426; 2'491) N for 1.0-COC, 2'299 (2'156; 2'490) N for 1.0-ZIR, 2'124 (1'245; 2'491) N for 1.0-HYC, and 1'537 (1'245; 1'783) N for 1.0-LDC. The differences of the medians between the test and the control groups did not reach statistical significance for the 0.5 mm thick specimens (KW: p = 0.6952 and p = 0.6986). Within the groups exhibiting 1.0 mm thickness, however, significant different medians were found: 1.0-LDC < 1.0-ZIR and 1.0-LDC < 1.0-COC (KW: p < 0.0209). CONCLUSIONS Regarding their maximum load-bearing capacity, minimally invasive occlusal veneers made of ceramic and hybrid materials can be applied to correct occlusal tooth wear and thus replace conventional crown restorations.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic of Reconstructive Dentistry
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Physical Sciences > Biomaterials
Physical Sciences > Biomedical Engineering
Physical Sciences > Mechanics of Materials
Language:English
Date:27 September 2018
Deposited On:14 Dec 2018 10:59
Last Modified:27 Aug 2024 03:37
Publisher:Elsevier
ISSN:1751-6161
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.jmbbm.2018.09.041
PubMed ID:30447557

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
51 citations in Web of Science®
59 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

481 downloads since deposited on 14 Dec 2018
96 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications