Header

UZH-Logo

Maintenance Infos

Biomechanical findings in horses showing asymmetrical vertical excursions of the withers at walk


Byström, Anna; Egenvall, Agneta; Roepstorff, Lars; Rhodin, Marie; S Bragança, Filipe; Hernlund, Elin; van Weeren, René; Weishaupt, Michael A; Clayton, H M (2018). Biomechanical findings in horses showing asymmetrical vertical excursions of the withers at walk. PLoS ONE, 13(9):e0204548.

Abstract

The walk and trot are inherently symmetrical gaits, making them potentially suitable for the detection of left-right asymmetries. The aims of this study were to describe asymmetrical vertical excursions of the withers at walk in non-lame high-level dressage horses and to seek associations between these asymmetric movements and other kinematic variables and vertical ground reaction forces (vGRFs). Seven dressage horses, judged clinically as being sound, walked unridden and unrestrained on a treadmill with an integrated force measuring system (480 Hz), from which spatiotemporal and vGRF variables were extracted. Markers were tracked by 12 infrared cameras (240 Hz). The vertical position of the sixth thoracic vertebra (T6), limb protraction and retraction distances throughout stance, and global limb lengths were determined. Contralateral trial-mean differences were calculated, including difference in T6 minimum vertical position between contralateral steps (T6minDiff). Mixed models were used to study associations between symmetry parameters. Trial-mean T6minDiff ranged between 0.3-23 mm. Of the seven horses, five consistently dropped the withers more in early left forelimb stance, one was fairly symmetrical, and one dropped the withers more in early right forelimb stance. Comparisons between contralateral limbs showed the following associations. The forelimb that was retracted when T6min was lowest showed greater retraction at toe-off (1 mm increase predicted 0.17 mm T6minDiff increase) and shorter stance duration (1 ms decrease predicted 0.3 mm T6minDiff increase). The hind limb that was in midstance when T6min was lowest showed a greater range of motion during the stance phase (1 mm increase in protraction or retraction predicted 0.2 mm T6minDiff increase). The haunches were displaced away from the side of the forelimb that was protracted when T6min was lowest (1 mm lateral shift predicted 0.07 mm T6minDiff increase). Forelimb and hind limb vGRF parameters were non-significant. Asymmetry of vertical withers movement in horses assessed as being sound at trot was related to a complex pattern of asymmetries in spatiotemporal variables throughout the stride cycle rather than to vertical load redistribution between the forelimbs. This suggests that the asymmetry may be due to inherent laterality rather than weight-bearing lameness.

Abstract

The walk and trot are inherently symmetrical gaits, making them potentially suitable for the detection of left-right asymmetries. The aims of this study were to describe asymmetrical vertical excursions of the withers at walk in non-lame high-level dressage horses and to seek associations between these asymmetric movements and other kinematic variables and vertical ground reaction forces (vGRFs). Seven dressage horses, judged clinically as being sound, walked unridden and unrestrained on a treadmill with an integrated force measuring system (480 Hz), from which spatiotemporal and vGRF variables were extracted. Markers were tracked by 12 infrared cameras (240 Hz). The vertical position of the sixth thoracic vertebra (T6), limb protraction and retraction distances throughout stance, and global limb lengths were determined. Contralateral trial-mean differences were calculated, including difference in T6 minimum vertical position between contralateral steps (T6minDiff). Mixed models were used to study associations between symmetry parameters. Trial-mean T6minDiff ranged between 0.3-23 mm. Of the seven horses, five consistently dropped the withers more in early left forelimb stance, one was fairly symmetrical, and one dropped the withers more in early right forelimb stance. Comparisons between contralateral limbs showed the following associations. The forelimb that was retracted when T6min was lowest showed greater retraction at toe-off (1 mm increase predicted 0.17 mm T6minDiff increase) and shorter stance duration (1 ms decrease predicted 0.3 mm T6minDiff increase). The hind limb that was in midstance when T6min was lowest showed a greater range of motion during the stance phase (1 mm increase in protraction or retraction predicted 0.2 mm T6minDiff increase). The haunches were displaced away from the side of the forelimb that was protracted when T6min was lowest (1 mm lateral shift predicted 0.07 mm T6minDiff increase). Forelimb and hind limb vGRF parameters were non-significant. Asymmetry of vertical withers movement in horses assessed as being sound at trot was related to a complex pattern of asymmetries in spatiotemporal variables throughout the stride cycle rather than to vertical load redistribution between the forelimbs. This suggests that the asymmetry may be due to inherent laterality rather than weight-bearing lameness.

Statistics

Citations

Dimensions.ai Metrics
17 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

45 downloads since deposited on 10 Dec 2018
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Equine Department
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Scopus Subject Areas:Health Sciences > Multidisciplinary
Uncontrolled Keywords:General Biochemistry, Genetics and Molecular Biology, General Agricultural and Biological Sciences, General Medicine
Language:English
Date:27 September 2018
Deposited On:10 Dec 2018 15:07
Last Modified:20 Sep 2023 01:46
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0204548
PubMed ID:30261019
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)