Header

UZH-Logo

Maintenance Infos

A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon


Baudis, Laura; Biondi, Yanina; Capelli, Chiara; Galloway, Michelle; Kazama, Shingo; Kish, Alexander; Pakarha, Payam; Piastra, Francesco; Wulf, Julien (2018). A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon. European Physical Journal C - Particles and Fields, 78:351.

Abstract

A small-scale, two-phase (liquid/gas) xenon time projection chamber (Xurich II) was designed, constructed and is under operation at the University of Zürich. Its main purpose is to investigate the microphysics of particle interactions in liquid xenon at energies below 50 keV, which are relevant for rare event searches using xenon as target material. Here we describe in detail the detector, its associated infrastructure, and the signal identification algorithm developed for processing and analysing the data. We present the first characterisation of the new instrument with calibration data from an internal 83mKr source. The zero-field light yield is 15.0 and 14.0 photoelectrons/keV at 9.4 and 32.1 keV, respectively, and the corresponding values at an electron drift field of 1 kV/cm are 10.8 and 7.9 photoelectrons/keV. The charge yields at these energies are 28 and 31 electrons/keV, with the proportional scintillation yield of 24 photoelectrons per one electron extracted into the gas phase, and an electron lifetime of 200 μs. The relative energy resolution, σ/E, is 11.9 and 5.8% at 9.4 and 32.1 keV, respectively using a linear combination of the scintillation and ionisation signals. We conclude with measurements of the electron drift velocity at various electric fields, and compare these to literature values.

Abstract

A small-scale, two-phase (liquid/gas) xenon time projection chamber (Xurich II) was designed, constructed and is under operation at the University of Zürich. Its main purpose is to investigate the microphysics of particle interactions in liquid xenon at energies below 50 keV, which are relevant for rare event searches using xenon as target material. Here we describe in detail the detector, its associated infrastructure, and the signal identification algorithm developed for processing and analysing the data. We present the first characterisation of the new instrument with calibration data from an internal 83mKr source. The zero-field light yield is 15.0 and 14.0 photoelectrons/keV at 9.4 and 32.1 keV, respectively, and the corresponding values at an electron drift field of 1 kV/cm are 10.8 and 7.9 photoelectrons/keV. The charge yields at these energies are 28 and 31 electrons/keV, with the proportional scintillation yield of 24 photoelectrons per one electron extracted into the gas phase, and an electron lifetime of 200 μs. The relative energy resolution, σ/E, is 11.9 and 5.8% at 9.4 and 32.1 keV, respectively using a linear combination of the scintillation and ionisation signals. We conclude with measurements of the electron drift velocity at various electric fields, and compare these to literature values.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

45 downloads since deposited on 18 Dec 2018
43 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Uncontrolled Keywords:Physics and Astronomy (miscellaneous), Engineering (miscellaneous)
Language:English
Date:1 May 2018
Deposited On:18 Dec 2018 16:59
Last Modified:24 Sep 2019 23:57
Publisher:Springer
ISSN:1434-6044
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1140/epjc/s10052-018-5801-5
Project Information:
  • : FunderH2020
  • : Grant ID742789
  • : Project TitleXenoscope - Towards a multi-ton xenon observatory for astroparticle physics
  • : FunderH2020
  • : Grant ID674896
  • : Project TitleELUSIVES - The Elusives Enterprise: Asymmetries of the Invisible Universe
  • : FunderH2020
  • : Grant ID690575
  • : Project TitleInvisiblesPlus - InvisiblesPlus

Download

Gold Open Access

Download PDF  'A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)