Header

UZH-Logo

Maintenance Infos

Assessing rehabilitation of managed mangrove ecosystems using high resolution remote sensing


Oostdijk, Maartje; Santos, Maria J; Whigham, Dennis; Verhoeven, Jos; Silvestri, Sonia (2018). Assessing rehabilitation of managed mangrove ecosystems using high resolution remote sensing. Estuarine, Coastal and Shelf Science, 211:238-247.

Abstract

Mangroves are valuable ecosystems for coastal protection, carbon sequestration and storage, and they provide habitat, refuge and rearing areas for many important marine species. To control mosquito outbreaks in coastal regions, mangroves were often impounded and managed using a variety of techniques that ranged from the application of insecticides to water level manipulation. Since continuous impounding had been shown to have negative effects on mangrove vegetation, other techniques have been used to manage hydrology in impoundments. A recent technique is called rotational impoundment management (RIM) and it involves flooding impoundments in summer and spring, the reproductive season of the mosquitos. In this study, we assessed the effects of 5 years of RIM management on mangrove vegetation in an impoundment on the east coast of Florida. We compared mangrove vegetation in the RIM impoundment with an adjacent impoundment that was not managed. We created a map of leaf area index (LAI) to assess vegetation productivity and its change in the two impoundments. We classified color-infrared aerial photographs from 2008 to 2010 and a WorldView-2 satellite image from 2014 to measure the extent of mangrove vegetation types and temporal changes in the two impoundments. We found a 38% increase in cover of dense mangrove vegetation after five years for the RIM-impounded area. Classification accuracy was around 80% for all imagery. The increased growth of plants and cover of dense mangroves in the RIM impoundment was corroborated by observed leaf area index values. Overall, the study demonstrates that vegetation in the RIM impoundment is becoming denser and in the near future will probably become similar to an impoundment that is open to tidal exchange or mangrove dominated areas that are not impounded.

Abstract

Mangroves are valuable ecosystems for coastal protection, carbon sequestration and storage, and they provide habitat, refuge and rearing areas for many important marine species. To control mosquito outbreaks in coastal regions, mangroves were often impounded and managed using a variety of techniques that ranged from the application of insecticides to water level manipulation. Since continuous impounding had been shown to have negative effects on mangrove vegetation, other techniques have been used to manage hydrology in impoundments. A recent technique is called rotational impoundment management (RIM) and it involves flooding impoundments in summer and spring, the reproductive season of the mosquitos. In this study, we assessed the effects of 5 years of RIM management on mangrove vegetation in an impoundment on the east coast of Florida. We compared mangrove vegetation in the RIM impoundment with an adjacent impoundment that was not managed. We created a map of leaf area index (LAI) to assess vegetation productivity and its change in the two impoundments. We classified color-infrared aerial photographs from 2008 to 2010 and a WorldView-2 satellite image from 2014 to measure the extent of mangrove vegetation types and temporal changes in the two impoundments. We found a 38% increase in cover of dense mangrove vegetation after five years for the RIM-impounded area. Classification accuracy was around 80% for all imagery. The increased growth of plants and cover of dense mangroves in the RIM impoundment was corroborated by observed leaf area index values. Overall, the study demonstrates that vegetation in the RIM impoundment is becoming denser and in the near future will probably become similar to an impoundment that is open to tidal exchange or mangrove dominated areas that are not impounded.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Uncontrolled Keywords:Aquatic Science, Oceanography
Language:English
Date:1 October 2018
Deposited On:18 Dec 2018 16:34
Last Modified:19 Dec 2018 08:34
Publisher:Elsevier
ISSN:0272-7714
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.ecss.2018.06.020

Download

Full text not available from this repository.
View at publisher

Get full-text in a library