Header

UZH-Logo

Maintenance Infos

Evidence for a subcortical origin of mirror movements after stroke: a longitudinal study


Ejaz, Naveed; Xu, Jing; Branscheidt, Meret; Hertler, Benjamin; Schambra, Heidi; Widmer, Mario; Faria, Andreia V; Harran, Michelle D; Cortes, Juan C; Kim, Nathan; Celnik, Pablo A; Kitago, Tomoko; Luft, Andreas R; Krakauer, John W; Diedrichsen, Jörn (2018). Evidence for a subcortical origin of mirror movements after stroke: a longitudinal study. Brain: a journal of neurology, 141(3):837-847.

Abstract

Following a stroke, mirror movements are unintended movements that appear in the non-paretic hand when the paretic hand voluntarily moves. Mirror movements have previously been linked to overactivation of sensorimotor areas in the non-lesioned hemisphere. In this study, we hypothesized that mirror movements might instead have a subcortical origin, and are the by-product of subcortical motor pathways upregulating their contributions to the paretic hand. To test this idea, we first characterized the time course of mirroring in 53 first-time stroke patients, and compared it to the time course of activities in sensorimotor areas of the lesioned and non-lesioned hemispheres (measured using functional MRI). Mirroring in the non-paretic hand was exaggerated early after stroke (Week 2), but progressively diminished over the year with a time course that parallelled individuation deficits in the paretic hand. We found no evidence of cortical overactivation that could explain the time course changes in behaviour, contrary to the cortical model of mirroring. Consistent with a subcortical origin of mirroring, we predicted that subcortical contributions should broadly recruit fingers in the non-paretic hand, reflecting the limited capacity of subcortical pathways in providing individuated finger control. We therefore characterized finger recruitment patterns in the non-paretic hand during mirroring. During mirroring, non-paretic fingers were broadly recruited, with mirrored forces in homologous fingers being only slightly larger (1.76 times) than those in non-homologous fingers. Throughout recovery, the pattern of finger recruitment during mirroring for patients looked like a scaled version of the corresponding control mirroring pattern, suggesting that the system that is responsible for mirroring in controls is upregulated after stroke. Together, our results suggest that post-stroke mirror movements in the non-paretic hand, like enslaved movements in the paretic hand, are caused by the upregulation of a bilaterally organized subcortical system.

Abstract

Following a stroke, mirror movements are unintended movements that appear in the non-paretic hand when the paretic hand voluntarily moves. Mirror movements have previously been linked to overactivation of sensorimotor areas in the non-lesioned hemisphere. In this study, we hypothesized that mirror movements might instead have a subcortical origin, and are the by-product of subcortical motor pathways upregulating their contributions to the paretic hand. To test this idea, we first characterized the time course of mirroring in 53 first-time stroke patients, and compared it to the time course of activities in sensorimotor areas of the lesioned and non-lesioned hemispheres (measured using functional MRI). Mirroring in the non-paretic hand was exaggerated early after stroke (Week 2), but progressively diminished over the year with a time course that parallelled individuation deficits in the paretic hand. We found no evidence of cortical overactivation that could explain the time course changes in behaviour, contrary to the cortical model of mirroring. Consistent with a subcortical origin of mirroring, we predicted that subcortical contributions should broadly recruit fingers in the non-paretic hand, reflecting the limited capacity of subcortical pathways in providing individuated finger control. We therefore characterized finger recruitment patterns in the non-paretic hand during mirroring. During mirroring, non-paretic fingers were broadly recruited, with mirrored forces in homologous fingers being only slightly larger (1.76 times) than those in non-homologous fingers. Throughout recovery, the pattern of finger recruitment during mirroring for patients looked like a scaled version of the corresponding control mirroring pattern, suggesting that the system that is responsible for mirroring in controls is upregulated after stroke. Together, our results suggest that post-stroke mirror movements in the non-paretic hand, like enslaved movements in the paretic hand, are caused by the upregulation of a bilaterally organized subcortical system.

Statistics

Citations

Dimensions.ai Metrics
40 citations in Web of Science®
41 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

57 downloads since deposited on 28 Dec 2018
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Neurology (clinical)
Language:English
Date:1 March 2018
Deposited On:28 Dec 2018 12:43
Last Modified:30 Nov 2023 08:14
Publisher:Oxford University Press
ISSN:0006-8950
Additional Information:This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Brain following peer review. The definitive publisher-authenticated version Ejaz, Naveed; Xu, Jing; Branscheidt, Meret; Hertler, Benjamin; Schambra, Heidi; Widmer, Mario; Faria, Andreia V; Harran, Michelle D; Cortes, Juan C; Kim, Nathan; Celnik, Pablo A; Kitago, Tomoko; Luft, Andreas R; Krakauer, John W; Diedrichsen, Jörn (2018). Evidence for a subcortical origin of mirror movements after stroke: a longitudinal study. Brain: a journal of neurology:Epub ahead of print. is available online at:https://academic.oup.com/brain/article/141/3/837/4831239
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/brain/awx384
PubMed ID:29394326
  • Content: Accepted Version