Header

UZH-Logo

Maintenance Infos

Soft gluon resummation for Higgs boson pair production including finite Mt effects


de Florian, Daniel; Mazzitelli, Javier (2018). Soft gluon resummation for Higgs boson pair production including finite Mt effects. Journal of High Energy Physics, 2018(8):156.

Abstract

We perform the all orders resummation of threshold enhanced contributions for the Higgs boson pair production cross section via gluon fusion, including finite top quark mass (Mt) effects. We present results for the total cross section and Higgs pair invariant mass (Mhh) distribution. We obtain results at next-to-leading logarithmic accuracy (NLL) which retain the full Mt dependence, and are matched to the full next-to-leading order (NLO) prediction. Our NLL+NLO results represent the most advanced prediction with full Mt dependence for this process, and produce an increase of about 4% in the total cross section with respect to the NLO result for LHC energies, and for a central scale μ0 = Mhh/2. We also consistently combine the full NLL with the next-to-next-to-leading logarithmically (NNLL) accurate resummation computed in the Born-improved large-Mt limit, and match it to the next-to-next-to-leading order approximation of ref. [1], so called NNLOFTa. We find that the resummation effects are very small at NNLL for μ0 = Mhh/2, in particular below 1% at 13 TeV, indicating that the perturbative expansion is under control. In all cases the resummation effects are found to be substantially larger for the central scale μ0 = Mhh, resulting in a more stable cross section with respect to scale variations than the fixed order calculation.

Abstract

We perform the all orders resummation of threshold enhanced contributions for the Higgs boson pair production cross section via gluon fusion, including finite top quark mass (Mt) effects. We present results for the total cross section and Higgs pair invariant mass (Mhh) distribution. We obtain results at next-to-leading logarithmic accuracy (NLL) which retain the full Mt dependence, and are matched to the full next-to-leading order (NLO) prediction. Our NLL+NLO results represent the most advanced prediction with full Mt dependence for this process, and produce an increase of about 4% in the total cross section with respect to the NLO result for LHC energies, and for a central scale μ0 = Mhh/2. We also consistently combine the full NLL with the next-to-next-to-leading logarithmically (NNLL) accurate resummation computed in the Born-improved large-Mt limit, and match it to the next-to-next-to-leading order approximation of ref. [1], so called NNLOFTa. We find that the resummation effects are very small at NNLL for μ0 = Mhh/2, in particular below 1% at 13 TeV, indicating that the perturbative expansion is under control. In all cases the resummation effects are found to be substantially larger for the central scale μ0 = Mhh, resulting in a more stable cross section with respect to scale variations than the fixed order calculation.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

35 downloads since deposited on 20 Dec 2018
33 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Uncontrolled Keywords:Nuclear and High Energy Physics
Language:English
Date:1 August 2018
Deposited On:20 Dec 2018 12:17
Last Modified:24 Sep 2019 23:59
Publisher:Springer
ISSN:1029-8479
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1007/jhep08(2018)156

Download

Gold Open Access

Download PDF  'Soft gluon resummation for Higgs boson pair production including finite Mt effects'.
Preview
Content: Published Version
Filetype: PDF
Size: 471kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)