Header

UZH-Logo

Maintenance Infos

Glacier branch lines and glacier ice thickness estimation for debris-covered glaciers in the Central Tien Shan


Pieczonka, Tino; Bolch, Tobias; Kröhnert, Melanie; Peters, Juliane; Liu, Shiyin (2018). Glacier branch lines and glacier ice thickness estimation for debris-covered glaciers in the Central Tien Shan. Journal of Glaciology, 64(247):835-849.

Abstract

Information about the ice volume stored in glaciers is of high importance for sustainable water management in many arid regions of Central Asia. Several methods to estimate the ice volume exist. However, none of them take the specific characteristics of flat terminus debris-covered glaciers into account. We present a method for deriving spatially-distributed ice thickness for debris-covered dendritic glaciers, which are common not only in Central Tien Shan but also in several other mountain ranges in High Asia. The method relies on automatically generated branch lines, observed surface velocities and surface topographic parameters as basic input. Branch lines were generated using Thiessen polygons and Dijkstra's path algorithm. Ice thicknesses for four debris-covered glaciers – South Inylchek, Kaindy, Tomur and Koxkar glaciers – have been estimated along the branch line network solving the equation of laminar flow. For Koxkar and South Inylchek glaciers, respectively, maximum thicknesses of ~250 and 380 m were estimated. These results differ by ~50 m compared with GPR measurements with an uncertainty for the debris-covered parts of ~40%. Based on geodetic mass balances, we estimate that the investigated glaciers lost between 6 and 28% of their volume from 1975 to the early 2000s.

Abstract

Information about the ice volume stored in glaciers is of high importance for sustainable water management in many arid regions of Central Asia. Several methods to estimate the ice volume exist. However, none of them take the specific characteristics of flat terminus debris-covered glaciers into account. We present a method for deriving spatially-distributed ice thickness for debris-covered dendritic glaciers, which are common not only in Central Tien Shan but also in several other mountain ranges in High Asia. The method relies on automatically generated branch lines, observed surface velocities and surface topographic parameters as basic input. Branch lines were generated using Thiessen polygons and Dijkstra's path algorithm. Ice thicknesses for four debris-covered glaciers – South Inylchek, Kaindy, Tomur and Koxkar glaciers – have been estimated along the branch line network solving the equation of laminar flow. For Koxkar and South Inylchek glaciers, respectively, maximum thicknesses of ~250 and 380 m were estimated. These results differ by ~50 m compared with GPR measurements with an uncertainty for the debris-covered parts of ~40%. Based on geodetic mass balances, we estimate that the investigated glaciers lost between 6 and 28% of their volume from 1975 to the early 2000s.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

25 downloads since deposited on 04 Jan 2019
25 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Uncontrolled Keywords:Earth-Surface Processes
Language:English
Date:1 October 2018
Deposited On:04 Jan 2019 13:49
Last Modified:04 Jan 2019 13:50
Publisher:International Glaciological Society
ISSN:0022-1430
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1017/jog.2018.75

Download

Download PDF  'Glacier branch lines and glacier ice thickness estimation for debris-covered glaciers in the Central Tien Shan'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)