Header

UZH-Logo

Maintenance Infos

Search for new physics in dijet angular distributions using proton–proton collisions at $\sqrt s$= 13 TeV and constraints on dark matter and other models


CMS Collaboration; Canelli, Maria Florencia; Kilminster, Benjamin; Aarrestad, Thea K; Brzhechko, Danyyl; Caminada, Lea; De Cosa, Annapaoloa; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Leontsinis, Stefanos; Mikuni, Vinicius Massami; Neutelings, Izaak; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Wertz, Sebastien; Zucchetta, Alberto; et al (2018). Search for new physics in dijet angular distributions using proton–proton collisions at $\sqrt s$= 13 TeV and constraints on dark matter and other models. European Physical Journal B: Condensed Matter and Complex Systems, C78(9):789.

Abstract

A search is presented for physics beyond the standard model, based on measurements of dijet angular distributions in proton–proton collisions at $\sqrt s$ = 13TeV. The data collected with the CMS detector at the LHC correspond to an integrated luminosity of 35.9 $fb^{−1}$. The observed distributions, corrected to particle level, are found to be in agreement with predictions from perturbative quantum chromodynamics that include electroweak corrections. Constraints are placed on models containing quark contact interactions, extra spatial dimensions, quantum black holes, or dark matter, using the detector-level distributions. In a benchmark model where only left-handed quarks participate, contact interactions are excluded at the 95% confidence level up to a scale of 12.8 or 17.5TeV, for destructive or constructive interference, respectively. The most stringent lower limits to date are set on the ultraviolet cutoff in the Arkani–Hamed–Dimopoulos–Dvali model of extra dimensions. In the Giudice–Rattazzi–Wells convention, the cutoff scale is excluded up to 10.1TeV. The production of quantum black holes is excluded for masses below 5.9 and 8.2TeV, depending on the model. For the first time, lower limits between 2.0 and 4.6TeVare set on the mass of a dark matter mediator for (axial-)vector mediators, for the universal quark coupling $g_q$=1.0.

Abstract

A search is presented for physics beyond the standard model, based on measurements of dijet angular distributions in proton–proton collisions at $\sqrt s$ = 13TeV. The data collected with the CMS detector at the LHC correspond to an integrated luminosity of 35.9 $fb^{−1}$. The observed distributions, corrected to particle level, are found to be in agreement with predictions from perturbative quantum chromodynamics that include electroweak corrections. Constraints are placed on models containing quark contact interactions, extra spatial dimensions, quantum black holes, or dark matter, using the detector-level distributions. In a benchmark model where only left-handed quarks participate, contact interactions are excluded at the 95% confidence level up to a scale of 12.8 or 17.5TeV, for destructive or constructive interference, respectively. The most stringent lower limits to date are set on the ultraviolet cutoff in the Arkani–Hamed–Dimopoulos–Dvali model of extra dimensions. In the Giudice–Rattazzi–Wells convention, the cutoff scale is excluded up to 10.1TeV. The production of quantum black holes is excluded for masses below 5.9 and 8.2TeV, depending on the model. For the first time, lower limits between 2.0 and 4.6TeVare set on the mass of a dark matter mediator for (axial-)vector mediators, for the universal quark coupling $g_q$=1.0.

Statistics

Citations

Dimensions.ai Metrics
33 citations in Web of Science®
38 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

26 downloads since deposited on 22 Feb 2019
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Engineering (miscellaneous)
Physical Sciences > Physics and Astronomy (miscellaneous)
Language:English
Date:2018
Deposited On:22 Feb 2019 08:39
Last Modified:20 Sep 2023 01:46
Publisher:Springer
ISSN:1434-6028
OA Status:Gold
Publisher DOI:https://doi.org/10.1140/epjc/s10052-018-6242-x
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)