Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Rectifiability and upper Minkowski bounds for singularities of harmonic $Q$-valued maps

De Lellis, Camillo; Marchese, Andrea; Spadaro, Emanuele; Valtorta, Daniele (2018). Rectifiability and upper Minkowski bounds for singularities of harmonic $Q$-valued maps. Commentarii Mathematici Helvetici (CMH), 93(4):737-779.

Abstract

In this article we prove that the singular set of Dirichlet-minimizing $Q$-valued functions is countably $(m−2)$-rectifiable and we give upper bounds for the $(m–2)$-dimensional Minkowski content of the set of singular points with multiplicity $Q$.

Additional indexing

Item Type:Journal Article, not_refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Scopus Subject Areas:Physical Sciences > General Mathematics
Uncontrolled Keywords:General Mathematics
Language:English
Date:20 November 2018
Deposited On:17 Jan 2019 11:01
Last Modified:20 Dec 2024 02:36
Publisher:European Mathematical Society
ISSN:0010-2571
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.4171/cmh/449
Download PDF  'Rectifiability and upper Minkowski bounds for singularities of harmonic $Q$-valued maps'.
Preview
  • Content: Accepted Version
  • Language: English

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
18 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

64 downloads since deposited on 17 Jan 2019
18 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications