Header

UZH-Logo

Maintenance Infos

Using virtual reality for forensic examinations of injuries


Koller, Stephanie; Ebert, Lars C; Martinez, Rosa Maria; Sieberth, Till (2019). Using virtual reality for forensic examinations of injuries. Forensic Science International, 295:30-35.

Abstract

The ability to accurately determine injury dimensions is an essential property of forensic documentation. The current standard for injury documentation is photography using a scale to approximate the injury dimensions in the image. The technical qualities of the photograph, such as orthogonality, depth of the field and sharpness of the desired area, are vital to obtaining a correct measurement. Adequate training of the forensic staff can reduce technical errors; nonetheless, there will always be some loss of information when visualizing an injury as a three-dimensional (3D) object on a two-dimensional (2D) photograph. The shortcomings of 2D photographs can be resolved by using 3D photogrammetry, which allows 3D documentation of persons and their injuries. A series of photographs has to be acquired and processed in photogrammetric software to create a photorealistic 3D model. In a prior study, a mannequin equipped with wound tattoos of known dimensions was documented with 3D photogrammetry using a multi-camera device. On the created 3D model, the dimensions of the injuries were then measured and compared to the dimensions approximated from standard forensic photographs. The results showed that the photogrammetric measurements in 3D are more accurate than the approximations performed with standard forensic photographs. In this subsequent study, the created 3D model was visualized and surveyed in virtual reality (VR), and the results were compared to the previous study. Our goal was to establish how accurately injuries can be measured in VR compared to the standard forensic photo documentation and photogrammetric method that is used on computer screens. We found that the measurements in VR are more accurate than the approximations from forensic photo documentation, but slightly less accurate than the photogrammetric measurements performed on a computer screen in dedicated software. In conclusion, photogrammetric software and virtual reality tools can both be used to make accurate size measurements of forensics-relevant injuries. Furthermore, 3D models can be visualized in varying ways allowing a much better understanding and review of injuries, even after the injury has healed.

Abstract

The ability to accurately determine injury dimensions is an essential property of forensic documentation. The current standard for injury documentation is photography using a scale to approximate the injury dimensions in the image. The technical qualities of the photograph, such as orthogonality, depth of the field and sharpness of the desired area, are vital to obtaining a correct measurement. Adequate training of the forensic staff can reduce technical errors; nonetheless, there will always be some loss of information when visualizing an injury as a three-dimensional (3D) object on a two-dimensional (2D) photograph. The shortcomings of 2D photographs can be resolved by using 3D photogrammetry, which allows 3D documentation of persons and their injuries. A series of photographs has to be acquired and processed in photogrammetric software to create a photorealistic 3D model. In a prior study, a mannequin equipped with wound tattoos of known dimensions was documented with 3D photogrammetry using a multi-camera device. On the created 3D model, the dimensions of the injuries were then measured and compared to the dimensions approximated from standard forensic photographs. The results showed that the photogrammetric measurements in 3D are more accurate than the approximations performed with standard forensic photographs. In this subsequent study, the created 3D model was visualized and surveyed in virtual reality (VR), and the results were compared to the previous study. Our goal was to establish how accurately injuries can be measured in VR compared to the standard forensic photo documentation and photogrammetric method that is used on computer screens. We found that the measurements in VR are more accurate than the approximations from forensic photo documentation, but slightly less accurate than the photogrammetric measurements performed on a computer screen in dedicated software. In conclusion, photogrammetric software and virtual reality tools can both be used to make accurate size measurements of forensics-relevant injuries. Furthermore, 3D models can be visualized in varying ways allowing a much better understanding and review of injuries, even after the injury has healed.

Statistics

Citations

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Legal Medicine
Dewey Decimal Classification:340 Law
610 Medicine & health
Uncontrolled Keywords:Pathology and Forensic Medicine
Language:English
Date:1 February 2019
Deposited On:03 Jan 2019 12:02
Last Modified:04 Jan 2019 08:38
Publisher:Elsevier
ISSN:0379-0738
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.forsciint.2018.11.006
PubMed ID:30554020

Download

Full text not available from this repository.
View at publisher

Get full-text in a library