Header

UZH-Logo

Maintenance Infos

Gunshot residue on dark materials: a comparison between infrared photography and the use of an alternative light source


Barrera, V; Fliss, Barbara; Panzer, S; Bolliger, S A (2018). Gunshot residue on dark materials: a comparison between infrared photography and the use of an alternative light source. International journal of legal medicine:Epub ahead of print.

Abstract

The pattern of gunshot residue (GSR) includes important information about muzzle-target distance since a larger GSR distribution diameter indicates a larger shooting distance. GSR may not be visible to the naked eye when, for example, it is located on dark textiles. In such cases, further procedures need to be performed in order to visualize the pattern of GSR. Besides chemical procedures, an alternative light source or infrared photography can be utilized for non-destructive GSR visualization. In the work presented, these two techniques are compared based on shooting experiments using 26 different dark textiles. Within the range of the alternative light source, the use of a 440-nm light in combination with an orange-colored filter led to the best visualization of GSR in the form of fluorescent particles. Infrared photography, on the other hand, visualized GSR as dark particles, whereas-ideally-the dark textile reflected the infrared light and appeared bright. The comparison of both techniques revealed that the GSR distribution visualized by infrared photography was not identical to the GSR distribution visualized with 440-nm illumination in combination with an orange-colored filter. We concluded that infrared photography visualizes the inner powder soot zone, whereas illumination at 440 nm leads to fluorescence of the outer powder soot zone, which can be visualized using an orange-colored filter. Knowledge of this difference in visualization of the two powder soot zones is important for forensic practitioners assessing firing distances. In the literature, however, this difference is not noted as clearly.

Abstract

The pattern of gunshot residue (GSR) includes important information about muzzle-target distance since a larger GSR distribution diameter indicates a larger shooting distance. GSR may not be visible to the naked eye when, for example, it is located on dark textiles. In such cases, further procedures need to be performed in order to visualize the pattern of GSR. Besides chemical procedures, an alternative light source or infrared photography can be utilized for non-destructive GSR visualization. In the work presented, these two techniques are compared based on shooting experiments using 26 different dark textiles. Within the range of the alternative light source, the use of a 440-nm light in combination with an orange-colored filter led to the best visualization of GSR in the form of fluorescent particles. Infrared photography, on the other hand, visualized GSR as dark particles, whereas-ideally-the dark textile reflected the infrared light and appeared bright. The comparison of both techniques revealed that the GSR distribution visualized by infrared photography was not identical to the GSR distribution visualized with 440-nm illumination in combination with an orange-colored filter. We concluded that infrared photography visualizes the inner powder soot zone, whereas illumination at 440 nm leads to fluorescence of the outer powder soot zone, which can be visualized using an orange-colored filter. Knowledge of this difference in visualization of the two powder soot zones is important for forensic practitioners assessing firing distances. In the literature, however, this difference is not noted as clearly.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Legal Medicine
Dewey Decimal Classification:340 Law
610 Medicine & health
Uncontrolled Keywords:Pathology and Forensic Medicine
Language:English
Date:14 November 2018
Deposited On:03 Jan 2019 11:56
Last Modified:03 Jan 2019 11:57
Publisher:Springer
ISSN:0937-9827
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s00414-018-1965-7
PubMed ID:30430255

Download

Full text not available from this repository.
View at publisher

Get full-text in a library