Header

UZH-Logo

Maintenance Infos

Body motion during dynamic couch tracking with healthy volunteers


Jöhl, Alexander; Bogowicz, Marta; Ehrbar, Stefanie; Guckenberger, Matthias; Klöck, Stephan; Meboldt, Mirko; Riesterer, Oliver; Zeilinger, Melanie; Schmid Daners, Marianne; Tanadini-Lang, Stephanie (2018). Body motion during dynamic couch tracking with healthy volunteers. Physics in Medicine and Biology, 64(1):015001.

Abstract

In precision radiotherapy, the intrafractional motion can cause a considerable uncertainty of the location of the tumor to be treated. An established approach is the expansion of the target volume to account for the motion. An alternative approach is couch-tracking, in which the patient is continually moved to compensate the intrafractional motion. However, couch-tracking itself might induce uncertainty of the patient's body position, because the body is non-rigid. One hundred healthy volunteers were positioned supine on a robotic couch. Optical markers were placed on the torso of the volunteers as well as on the couch, and their positions were tracked with an optical surface measurement system. Using these markers, the uncertainty of the body position relative to the couch position was estimated while the couch was static or moving. Over the included 83 healthy volunteers, the median of the uncertainty increased by 0.8 mm (SI), 0.4 mm (LR) and 0.4 mm (AP) when the couch moved. Couch motion was found to increase the uncertainty of the body position relative to the couch. However, this uncertainty is one order of magnitude smaller than the intrafractional tumor motion amplitudes to be compensated. Therefore, even with body motion present, the couch-tracking approach is a viable option. The study was registered at ClinicalTrials.gov (NCT02820532) and the Swiss national clinical trials portal (SNCTP000001878).

Abstract

In precision radiotherapy, the intrafractional motion can cause a considerable uncertainty of the location of the tumor to be treated. An established approach is the expansion of the target volume to account for the motion. An alternative approach is couch-tracking, in which the patient is continually moved to compensate the intrafractional motion. However, couch-tracking itself might induce uncertainty of the patient's body position, because the body is non-rigid. One hundred healthy volunteers were positioned supine on a robotic couch. Optical markers were placed on the torso of the volunteers as well as on the couch, and their positions were tracked with an optical surface measurement system. Using these markers, the uncertainty of the body position relative to the couch position was estimated while the couch was static or moving. Over the included 83 healthy volunteers, the median of the uncertainty increased by 0.8 mm (SI), 0.4 mm (LR) and 0.4 mm (AP) when the couch moved. Couch motion was found to increase the uncertainty of the body position relative to the couch. However, this uncertainty is one order of magnitude smaller than the intrafractional tumor motion amplitudes to be compensated. Therefore, even with body motion present, the couch-tracking approach is a viable option. The study was registered at ClinicalTrials.gov (NCT02820532) and the Swiss national clinical trials portal (SNCTP000001878).

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Radiation Oncology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:19 December 2018
Deposited On:23 Jan 2019 13:51
Last Modified:25 Sep 2019 00:02
Publisher:IOP Publishing
ISSN:0031-9155
OA Status:Closed
Publisher DOI:https://doi.org/10.1088/1361-6560/aaf361
PubMed ID:30523943

Download

Full text not available from this repository.
View at publisher

Get full-text in a library