Header

UZH-Logo

Maintenance Infos

Inhibition of Mevalonate Pathway Prevents Adipocyte Browning in Mice and Men by Affecting Protein Prenylation


Abstract

Recent research focusing on brown adipose tissue (BAT) function emphasizes its importance in systemic metabolic homeostasis. We show here that genetic and pharmacological inhibition of the mevalonate pathway leads to reduced human and mouse brown adipocyte function in vitro and impaired adipose tissue browning in vivo. A retrospective analysis of a large patient cohort suggests an inverse correlation between statin use and active BAT in humans, while we show in a prospective clinical trial that fluvastatin reduces thermogenic gene expression in human BAT. We identify geranylgeranyl pyrophosphate as the key mevalonate pathway intermediate driving adipocyte browning in vitro and in vivo, whose effects are mediated by geranylgeranyltransferases (GGTases), enzymes catalyzing geranylgeranylation of small GTP-binding proteins, thereby regulating YAP1/TAZ signaling through F-actin modulation. Conversely, adipocyte-specific ablation of GGTase I leads to impaired adipocyte browning, reduced energy expenditure, and glucose intolerance under obesogenic conditions, highlighting the importance of this pathway in modulating brown adipocyte functionality and systemic metabolism.

Abstract

Recent research focusing on brown adipose tissue (BAT) function emphasizes its importance in systemic metabolic homeostasis. We show here that genetic and pharmacological inhibition of the mevalonate pathway leads to reduced human and mouse brown adipocyte function in vitro and impaired adipose tissue browning in vivo. A retrospective analysis of a large patient cohort suggests an inverse correlation between statin use and active BAT in humans, while we show in a prospective clinical trial that fluvastatin reduces thermogenic gene expression in human BAT. We identify geranylgeranyl pyrophosphate as the key mevalonate pathway intermediate driving adipocyte browning in vitro and in vivo, whose effects are mediated by geranylgeranyltransferases (GGTases), enzymes catalyzing geranylgeranylation of small GTP-binding proteins, thereby regulating YAP1/TAZ signaling through F-actin modulation. Conversely, adipocyte-specific ablation of GGTase I leads to impaired adipocyte browning, reduced energy expenditure, and glucose intolerance under obesogenic conditions, highlighting the importance of this pathway in modulating brown adipocyte functionality and systemic metabolism.

Statistics

Citations

Dimensions.ai Metrics
51 citations in Web of Science®
52 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
04 Faculty of Medicine > Functional Genomics Center Zurich
04 Faculty of Medicine > University Hospital Zurich > Clinic for Nuclear Medicine
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Physiology
Life Sciences > Molecular Biology
Life Sciences > Cell Biology
Language:English
Date:1 April 2019
Deposited On:23 Jan 2019 14:32
Last Modified:21 Sep 2023 01:36
Publisher:Cell Press (Elsevier)
ISSN:1550-4131
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.cmet.2018.11.017
PubMed ID:30581121
Full text not available from this repository.