Header

UZH-Logo

Maintenance Infos

Probing the accuracy and precision of Hirshfeld atom refinement with HARt interfaced with Olex2


Fugel, Malte; Jayatilaka, Dylan; Hupf, Emanuel; Overgaard, Jacob; Hathwar, Venkatesha R; Macchi, Piero; Turner, Michael J; Howard, Judith A K; Dolomanov, Oleg V; Puschmann, Horst; Iversen, Bo B; Bürgi, Hans-Beat; Grabowsky, Simon (2018). Probing the accuracy and precision of Hirshfeld atom refinement with HARt interfaced with Olex2. IU Cr J, 5(1):32-44.

Abstract

Hirshfeld atom refinement (HAR) is a novel X-ray structure refinement technique that employs aspherical atomic scattering factors obtained from stockholder partitioning of a theoretically determined tailor-made static electron density. HAR overcomes many of the known limitations of independent atom modelling (IAM), such as too short element-hydrogen distances, r(X-H), or too large atomic displacement parameters (ADPs). This study probes the accuracy and precision of anisotropic hydrogen and non-hydrogen ADPs and of r(X-H) values obtained from HAR. These quantities are compared and found to agree with those obtained from (i) accurate neutron diffraction data measured at the same temperatures as the X-ray data and (ii) multipole modelling (MM), an established alternative method for interpreting X-ray diffraction data with the help of aspherical atomic scattering factors. Results are presented for three chemically different systems: the aromatic hydrocarbon rubrene (orthorhombic 5,6,11,12-tetraphenyltetracene), a co-crystal of zwitterionic betaine, imidazolium cations and picrate anions (BIPa), and the salt potassium hydrogen oxalate (KHOx). The non-hydrogen HAR-ADPs are as accurate and precise as the MM-ADPs. Both show excellent agreement with the neutron-based values and are superior to IAM-ADPs. The anisotropic hydrogen HAR-ADPs show a somewhat larger deviation from neutron-based values than the hydrogen SHADE-ADPs used in MM. Element-hydrogen bond lengths from HAR are in excellent agreement with those obtained from neutron diffraction experiments, although they are somewhat less precise. The residual density contour maps after HAR show fewer features than those after MM. Calculating the static electron density with the def2-TZVP basis set instead of the simpler def2-SVP one does not improve the refinement results significantly. All HARs were performed within the recently introduced HARt option implemented in the Olex2 program. They are easily launched inside its graphical user interface following a conventional IAM.

Abstract

Hirshfeld atom refinement (HAR) is a novel X-ray structure refinement technique that employs aspherical atomic scattering factors obtained from stockholder partitioning of a theoretically determined tailor-made static electron density. HAR overcomes many of the known limitations of independent atom modelling (IAM), such as too short element-hydrogen distances, r(X-H), or too large atomic displacement parameters (ADPs). This study probes the accuracy and precision of anisotropic hydrogen and non-hydrogen ADPs and of r(X-H) values obtained from HAR. These quantities are compared and found to agree with those obtained from (i) accurate neutron diffraction data measured at the same temperatures as the X-ray data and (ii) multipole modelling (MM), an established alternative method for interpreting X-ray diffraction data with the help of aspherical atomic scattering factors. Results are presented for three chemically different systems: the aromatic hydrocarbon rubrene (orthorhombic 5,6,11,12-tetraphenyltetracene), a co-crystal of zwitterionic betaine, imidazolium cations and picrate anions (BIPa), and the salt potassium hydrogen oxalate (KHOx). The non-hydrogen HAR-ADPs are as accurate and precise as the MM-ADPs. Both show excellent agreement with the neutron-based values and are superior to IAM-ADPs. The anisotropic hydrogen HAR-ADPs show a somewhat larger deviation from neutron-based values than the hydrogen SHADE-ADPs used in MM. Element-hydrogen bond lengths from HAR are in excellent agreement with those obtained from neutron diffraction experiments, although they are somewhat less precise. The residual density contour maps after HAR show fewer features than those after MM. Calculating the static electron density with the def2-TZVP basis set instead of the simpler def2-SVP one does not improve the refinement results significantly. All HARs were performed within the recently introduced HARt option implemented in the Olex2 program. They are easily launched inside its graphical user interface following a conventional IAM.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

0 downloads since deposited on 05 Feb 2019
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:1 January 2018
Deposited On:05 Feb 2019 12:44
Last Modified:05 Feb 2019 12:55
Publisher:International Union of Crystallography
ISSN:2052-2525
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1107/s2052252517015548
Project Information:
  • : FunderDeutsche Forschungsgemeinschaft
  • : Grant IDGR 4451/1-1
  • : Project Title
  • : FunderDeutsche Forschungsgemeinschaft
  • : Grant IDHU 2512/1-1
  • : Project Title
  • : FunderDanmarks Grundforskningsfond
  • : Grant IDDNRF93
  • : Project Title

Download

Download PDF  'Probing the accuracy and precision of Hirshfeld atom refinement with HARt interfaced with Olex2'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)