Header

UZH-Logo

Maintenance Infos

Low- and high-energy phenomenology of a doubly charged scalar


Crivellin, Andreas; Ghezzi, Margherita; Panizzi, Luca; Pruna, Giovanni; Signer, Adrian (2018). Low- and high-energy phenomenology of a doubly charged scalar. PSI-PR 08, University of Zurich.

Abstract

We explore the phenomenology of an SU(2)-singlet doubly charged scalar at the high and low energy frontier. Such a particle is predicted in different new physics models, like left-right symmetric models or the Zee-Babu model. Nonetheless, since its interactions with Standard Model (SM) leptons are gauge invariant, it can be consistently studied as a UV complete SM extension. Its signatures range from same-sign di-lepton pairs to flavour changing decays of charged leptons to muonium-antimuonium oscillations. In this article, we use a systematic effective-field-theory approach for studying the low-energy observables and comparing them consistently to collider bounds. For this purpose, experimental searches for doubly charged scalars at the Large Hadron Collider are reinterpreted, including large width effects, and projections for exclusion and discovery reaches in the high-luminosity phase are provided. The sensitivities of the future International Linear Collider and Compact Linear Collider for the doubly charged scalar are presented with focus on di-lepton final states and resonant production. Theoretically and phenomenologically motivated benchmark scenarios are considered showing the different impact of low- and high-energy observables. We find that future low- and high-energy experiments display strong complementarity in studying the parameter space of the model.

Abstract

We explore the phenomenology of an SU(2)-singlet doubly charged scalar at the high and low energy frontier. Such a particle is predicted in different new physics models, like left-right symmetric models or the Zee-Babu model. Nonetheless, since its interactions with Standard Model (SM) leptons are gauge invariant, it can be consistently studied as a UV complete SM extension. Its signatures range from same-sign di-lepton pairs to flavour changing decays of charged leptons to muonium-antimuonium oscillations. In this article, we use a systematic effective-field-theory approach for studying the low-energy observables and comparing them consistently to collider bounds. For this purpose, experimental searches for doubly charged scalars at the Large Hadron Collider are reinterpreted, including large width effects, and projections for exclusion and discovery reaches in the high-luminosity phase are provided. The sensitivities of the future International Linear Collider and Compact Linear Collider for the doubly charged scalar are presented with focus on di-lepton final states and resonant production. Theoretically and phenomenologically motivated benchmark scenarios are considered showing the different impact of low- and high-energy observables. We find that future low- and high-energy experiments display strong complementarity in studying the parameter space of the model.

Statistics

Downloads

17 downloads since deposited on 18 Jan 2019
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Working Paper
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:26 July 2018
Deposited On:18 Jan 2019 07:30
Last Modified:28 Oct 2019 08:27
Series Name:PSI-PR
OA Status:Green

Download

Green Open Access

Download PDF  'Low- and high-energy phenomenology of a doubly charged scalar'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 2MB