Header

UZH-Logo

Maintenance Infos

Visual capture of gait during redirected walking


Rothacher, Yannick; Nguyen, Anh; Lenggenhager, Bigna; Kunz, Andreas; Brugger, Peter (2018). Visual capture of gait during redirected walking. Scientific Reports, 8(1):17974.

Abstract

Redirected walking allows users of virtual reality applications to explore virtual environments larger than the available physical space. This is achieved by manipulating users' walking trajectories through visual rotation of the virtual surroundings, without users noticing this manipulation. Apart from its applied relevance, redirected walking is an attractive paradigm to investigate human perception and locomotion. An important yet unsolved question concerns individual differences in the ability to detect redirection. Addressing this question, we administered several perceptual-cognitive tasks to healthy participants, whose thresholds of detecting redirection in a virtual environment were also determined. We report relations between individual thresholds and measures of multisensory weighting (visually-assisted postural stability (Romberg quotient), subjective visual vertical (rod-and-frame test) and illusory self-motion (vection)). The performance in the rod-and-frame test, a classical measure of visual dependency regarding postural information, showed the strongest relation to redirection detection thresholds: The higher the visual dependency, the higher the detection threshold. This supports the interpretation of users' neglect of redirection manipulations as a "visual capture of gait". We discuss how future interdisciplinary studies, merging the fields of virtual reality and psychology, may help improving virtual reality applications and simultaneously deepen our understanding of how humans process multisensory conflicts during locomotion.

Abstract

Redirected walking allows users of virtual reality applications to explore virtual environments larger than the available physical space. This is achieved by manipulating users' walking trajectories through visual rotation of the virtual surroundings, without users noticing this manipulation. Apart from its applied relevance, redirected walking is an attractive paradigm to investigate human perception and locomotion. An important yet unsolved question concerns individual differences in the ability to detect redirection. Addressing this question, we administered several perceptual-cognitive tasks to healthy participants, whose thresholds of detecting redirection in a virtual environment were also determined. We report relations between individual thresholds and measures of multisensory weighting (visually-assisted postural stability (Romberg quotient), subjective visual vertical (rod-and-frame test) and illusory self-motion (vection)). The performance in the rod-and-frame test, a classical measure of visual dependency regarding postural information, showed the strongest relation to redirection detection thresholds: The higher the visual dependency, the higher the detection threshold. This supports the interpretation of users' neglect of redirection manipulations as a "visual capture of gait". We discuss how future interdisciplinary studies, merging the fields of virtual reality and psychology, may help improving virtual reality applications and simultaneously deepen our understanding of how humans process multisensory conflicts during locomotion.

Statistics

Citations

Altmetrics

Downloads

8 downloads since deposited on 22 Jan 2019
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Language:English
Date:19 December 2018
Deposited On:22 Jan 2019 12:00
Last Modified:01 Feb 2019 10:59
Publisher:Nature Publishing Group
ISSN:2045-2322
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s41598-018-36035-6
PubMed ID:30568182
Project Information:
  • : FunderSNSF
  • : Grant IDCR23I2_162752
  • : Project TitleIntegrating Neuropsychological Aspects for Redirection in Virtual Environments

Download

Download PDF  'Visual capture of gait during redirected walking'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)