Header

UZH-Logo

Maintenance Infos

Automated Source Estimation of Scalp EEG Epileptic Activity Using eLORETA Kurtosis Analysis


Ikeda, Shunichiro; Ishii, Ryouhei; Pascual-Marqui, Roberto D; Canuet, Leonides; Yoshimura, Masafumi; Nishida, Keiichiro; Kitaura, Yuichi; Katsura, Koji; Kinoshita, Toshihiko (2019). Automated Source Estimation of Scalp EEG Epileptic Activity Using eLORETA Kurtosis Analysis. Neuropsychobiology, 77(2):101-109.

Abstract

Objectives: eLORETA (exact low-resolution brain electromagnetic tomography) is a technique created by Pascual-Marqui et al. [Int J Psychophysiol. 1994 Oct; 18(1): 49–65] for the 3-dimensional representation of current source density in the brain by electroencephalography (EEG) data. Kurtosis analysis allows for the identification of spiky activity in the brain. In this study, we focused on the evaluation of the reliability of eLORETA kurtosis analysis. For this purpose, the results of eLORETA kurtosis source localization of paroxysmal activity in EEG were compared with those of eLORETA current source density (CSD) analysis of EEG data in 3 epilepsy patients with partial seizures. Methods: EEG was measured using a digital EEG system with 19 channels. We set the bandpass filter at traditional frequency band settings (1–4, 4–8, 8–15, 15–30, and 30–60 Hz) and 5–10 and 20–70 Hz and performed eLORETA kurtosis to compare the source localization of paroxysmal activity with that of visual interpretation of EEG data and CSD analysis of eLORETA in focal epilepsy patients. Results: The eLORETA kurtosis analysis of EEG data preprocessed by bandpass filtering from 20 to 70 Hz and traditional frequency band settings did not show any discrete paroxysmal source activity compatible with the results of CSD analysis of eLORETA. In all 3 cases, eLORETA kurtosis analysis filtered at 5–10 Hz showed paroxysmal activities in the theta band, which were all consistent with the visual inspection results and the CSD analysis results. Discussion: Our findings suggested that eLORETA kurtosis analysis of EEG data might be useful for the identification of spiky paroxysmal activity sources in epilepsy patients. Since EEG is widely used in the clinical practice of epilepsy, eLORETA kurtosis analysis is a promising method that can be applied to epileptic activity mapping.

Abstract

Objectives: eLORETA (exact low-resolution brain electromagnetic tomography) is a technique created by Pascual-Marqui et al. [Int J Psychophysiol. 1994 Oct; 18(1): 49–65] for the 3-dimensional representation of current source density in the brain by electroencephalography (EEG) data. Kurtosis analysis allows for the identification of spiky activity in the brain. In this study, we focused on the evaluation of the reliability of eLORETA kurtosis analysis. For this purpose, the results of eLORETA kurtosis source localization of paroxysmal activity in EEG were compared with those of eLORETA current source density (CSD) analysis of EEG data in 3 epilepsy patients with partial seizures. Methods: EEG was measured using a digital EEG system with 19 channels. We set the bandpass filter at traditional frequency band settings (1–4, 4–8, 8–15, 15–30, and 30–60 Hz) and 5–10 and 20–70 Hz and performed eLORETA kurtosis to compare the source localization of paroxysmal activity with that of visual interpretation of EEG data and CSD analysis of eLORETA in focal epilepsy patients. Results: The eLORETA kurtosis analysis of EEG data preprocessed by bandpass filtering from 20 to 70 Hz and traditional frequency band settings did not show any discrete paroxysmal source activity compatible with the results of CSD analysis of eLORETA. In all 3 cases, eLORETA kurtosis analysis filtered at 5–10 Hz showed paroxysmal activities in the theta band, which were all consistent with the visual inspection results and the CSD analysis results. Discussion: Our findings suggested that eLORETA kurtosis analysis of EEG data might be useful for the identification of spiky paroxysmal activity sources in epilepsy patients. Since EEG is widely used in the clinical practice of epilepsy, eLORETA kurtosis analysis is a promising method that can be applied to epileptic activity mapping.

Statistics

Citations

Dimensions.ai Metrics
5 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

163 downloads since deposited on 12 Feb 2019
62 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Psychiatry, Psychotherapy, and Psychosomatics
04 Faculty of Medicine > The KEY Institute for Brain-Mind Research
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Social Sciences & Humanities > Neuropsychology and Physiological Psychology
Health Sciences > Psychiatry and Mental Health
Life Sciences > Biological Psychiatry
Uncontrolled Keywords:Biological Psychiatry, Neuropsychology and Physiological Psychology, Psychiatry and Mental health
Language:English
Date:9 January 2019
Deposited On:12 Feb 2019 15:47
Last Modified:21 Sep 2023 01:37
Publisher:Karger
ISSN:0302-282X
OA Status:Green
Publisher DOI:https://doi.org/10.1159/000495522
PubMed ID:30625490
  • Content: Published Version
  • Language: English