Header

UZH-Logo

Maintenance Infos

Matter imprints in waveform models for neutron star binaries: Tidal and self-spin effects


Abstract

The combined observation of gravitational and electromagnetic waves from the coalescence of two neutron stars marks the beginning of multi-messenger astronomy with gravitational waves (GWs). The development of accurate gravitational waveform models is a crucial prerequisite to extract information about the properties of the binary system that generated a detected GW signal. In binary neutron star systems (BNS), tidal effects also need to be incorporated in the modeling for an accurate waveform representation. Building on previous work [Phys.Rev.D96 121501], we explore the performance of inspiral-merger waveform models that are obtained by adding a numerical relativity (NR) based approximant for the tidal part of the phasing (NRTidal) to existing models for nonprecessing and precessing binary black hole systems (SEOBNRv4, PhenomD and PhenomPv2), as implemented in the LSC Algorithm Library Suite. The resulting BNS waveforms are compared and contrasted to target waveforms hybridizing NR waveforms, covering the last approx. 10 orbits up to merger and extending through the postmerger phase, with inspiral waveforms calculated from 30Hz obtained with TEOBResumS. The latter is a state-of-the-art effective-one-body waveform model that blends together tidal and spin effects. We probe that the combination of the PN-based self-spin terms and of the NRTidal description is necessary to obtain minimal mismatches (< 0.01) and phase differences (< 1 rad) with respect to the target waveforms. However, we also discuss possible improvements and drawbacks of the NRTidal approximant in its current form, since we find that it tends to overestimate the tidal interaction with respect to the TEOBResumS model during the inspiral.

Abstract

The combined observation of gravitational and electromagnetic waves from the coalescence of two neutron stars marks the beginning of multi-messenger astronomy with gravitational waves (GWs). The development of accurate gravitational waveform models is a crucial prerequisite to extract information about the properties of the binary system that generated a detected GW signal. In binary neutron star systems (BNS), tidal effects also need to be incorporated in the modeling for an accurate waveform representation. Building on previous work [Phys.Rev.D96 121501], we explore the performance of inspiral-merger waveform models that are obtained by adding a numerical relativity (NR) based approximant for the tidal part of the phasing (NRTidal) to existing models for nonprecessing and precessing binary black hole systems (SEOBNRv4, PhenomD and PhenomPv2), as implemented in the LSC Algorithm Library Suite. The resulting BNS waveforms are compared and contrasted to target waveforms hybridizing NR waveforms, covering the last approx. 10 orbits up to merger and extending through the postmerger phase, with inspiral waveforms calculated from 30Hz obtained with TEOBResumS. The latter is a state-of-the-art effective-one-body waveform model that blends together tidal and spin effects. We probe that the combination of the PN-based self-spin terms and of the NRTidal description is necessary to obtain minimal mismatches (< 0.01) and phase differences (< 1 rad) with respect to the target waveforms. However, we also discuss possible improvements and drawbacks of the NRTidal approximant in its current form, since we find that it tends to overestimate the tidal interaction with respect to the TEOBResumS model during the inspiral.

Statistics

Citations

Dimensions.ai Metrics
23 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

36 downloads since deposited on 25 Jan 2019
35 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Uncontrolled Keywords:Physics and Astronomy (miscellaneous)
Language:English
Date:18 January 2019
Deposited On:25 Jan 2019 13:46
Last Modified:23 Feb 2020 06:53
Publisher:American Physical Society
ISSN:2470-0010
OA Status:Green
Publisher DOI:https://doi.org/10.1103/physrevd.99.024029
Project Information:
  • : FunderH2020
  • : Grant ID749145
  • : Project TitleBNSmergers - Gravitational Waves and Electromagnetic Counterparts from Generic Binary Neutron Star Systems
  • : FunderH2020
  • : Grant ID753115
  • : Project TitleACFD - Acoustical and Canonical Fluid Dynamics in numerical general relativity
  • : FunderH2020
  • : Grant ID647839
  • : Project TitleBlackHoleMaps - Mapping gravitational waves from collisions of black holes

Download

Green Open Access

Download PDF  'Matter imprints in waveform models for neutron star binaries: Tidal and self-spin effects'.
Preview
Content: Published Version
Filetype: PDF
Size: 4MB
View at publisher