Abstract
A multimode self-mixing terahertz-frequency gas absorption spectroscopy is demonstrated based on a quantum cascade laser. A double-metal device configuration is used to expand the laser's frequency tuning range, and a precision-micromachined external waveguide module is used to enhance the optical feedback. Methanol spectra are measured using two laser modes at 3.362 and 3.428 THz, simultaneously, with more than eight absorption peaks resolved over a 17 GHz bandwidth, which provide the noise-equivalent absorption sensitivity of 1.20×10 cm Hz and 2.08×10 cm Hz, respectively. In contrast to all previous self-mixing spectroscopy, our multimode technique expands the sensing bandwidth and duty cycle significantly.