Header

UZH-Logo

Maintenance Infos

Humidity-regulated CLCA2 protects the epidermis from hyperosmotic stress


Seltmann, Kristin; Meyer, Michael; Sulcova, Jitka; Kockmann, Tobias; Wehkamp, Ulrike; Weidinger, Stephan; auf dem Keller, Ulrich; Werner, Sabine (2018). Humidity-regulated CLCA2 protects the epidermis from hyperosmotic stress. Science Translational Medicine, 10(440):eaao4650.

Abstract

Low environmental humidity aggravates symptoms of the inflammatory skin disease atopic dermatitis (AD). Using mice that develop AD-like signs, we show that an increase in environmental humidity rescues their cutaneous inflammation and associated epidermal abnormalities. Quantitative proteomics analysis of epidermal lysates of mice kept at low or high humidity identified humidity-regulated proteins, including chloride channel accessory 3A2 (CLCA3A2), a protein with previously unknown function in the skin. The epidermis of patients with AD, organotypic skin cultures under dry conditions, and cultured keratinocytes exposed to hyperosmotic stress showed up-regulation of the nonorthologous human homolog CLCA2. Hyperosmolarity-induced CLCA2 expression occurred via p38/c-Jun N-terminal kinase–activating transcription factor 2 signaling. CLCA2 knockdown promoted keratinocyte apoptosis induced by hyperosmotic stress through impairment of cell-cell adhesion. These findings provide a mechanistic explanation for the beneficial effect of high environmental humidity for AD patients and identify CLCA3A2/CLCA2 up-regulation as a mechanism to protect keratinocytes from damage induced by low humidity.

Abstract

Low environmental humidity aggravates symptoms of the inflammatory skin disease atopic dermatitis (AD). Using mice that develop AD-like signs, we show that an increase in environmental humidity rescues their cutaneous inflammation and associated epidermal abnormalities. Quantitative proteomics analysis of epidermal lysates of mice kept at low or high humidity identified humidity-regulated proteins, including chloride channel accessory 3A2 (CLCA3A2), a protein with previously unknown function in the skin. The epidermis of patients with AD, organotypic skin cultures under dry conditions, and cultured keratinocytes exposed to hyperosmotic stress showed up-regulation of the nonorthologous human homolog CLCA2. Hyperosmolarity-induced CLCA2 expression occurred via p38/c-Jun N-terminal kinase–activating transcription factor 2 signaling. CLCA2 knockdown promoted keratinocyte apoptosis induced by hyperosmotic stress through impairment of cell-cell adhesion. These findings provide a mechanistic explanation for the beneficial effect of high environmental humidity for AD patients and identify CLCA3A2/CLCA2 up-regulation as a mechanism to protect keratinocytes from damage induced by low humidity.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:9 May 2018
Deposited On:15 Feb 2019 16:36
Last Modified:17 Sep 2019 19:57
Publisher:American Association for the Advancement of Science
ISSN:1946-6234
OA Status:Closed
Publisher DOI:https://doi.org/10.1126/scitranslmed.aao4650
PubMed ID:29743348
Project Information:
  • : FunderSNSF
  • : Grant ID31003A_169204
  • : Project TitleRole of cytokines and environmental cues in wound repair and inflammatory skin disease

Download

Full text not available from this repository.
View at publisher

Get full-text in a library