Header

UZH-Logo

Maintenance Infos

High metabolic activity of tissue-nonspecific alkaline phosphatase not only in young but also in adult bone as demonstrated using a new histochemical detection protocol


Maly, I Piotr; Eppler, Elisabeth; Müller-Gerbl, Magdalena (2018). High metabolic activity of tissue-nonspecific alkaline phosphatase not only in young but also in adult bone as demonstrated using a new histochemical detection protocol. General and Comparative Endocrinology, 258:109-118.

Abstract

Tissue-nonspecific alkaline phosphatase (TNAP) is playing a key role in bone calcification, as has been demonstrated in different mammalian species including human and rodents. However, to investigate age-related changes during life history, histochemical demonstration of TNAP is severely hampered, particularly in the elderly, by technical difficulties associated with sectioning calcified tissue. Sufficient fixation must precede decalcification since poorly fixed bone tissue is exposed to the deleterious effects of decalcification reagents. In order to find a method that would allow cryosectioning of bone without loss of TNAP activity, we assessed the efficacy of different fixation reagents regarding the effects on structural integrity and TNAP activity using liver and osseous tissue from younger and older horses. The results of this study reveal that glyoxal-based fixatives sufficiently preserved bone tissue for successful cryosectioning without compromising TNAP activity. The method described combines the demonstration of TNAP activity with optimal preservation of tissue morphology in osseous tissue of younger and even of older mammals. As a model species, we selected horse bones in light of potentially higher similarities to ageing history and lifelong locomotion in humans as compared to other, mostly smaller, experimental model species with a much shorter life span and artificial locomotive activity when kept in cages. This may serve as a basis for future studies addressing the impact of different life traits in iconic, domestic and companion animals, which are often patients in veterinary medicine, as well as for basic research on human physiology and pathologies of the musculoskeletal system.

Abstract

Tissue-nonspecific alkaline phosphatase (TNAP) is playing a key role in bone calcification, as has been demonstrated in different mammalian species including human and rodents. However, to investigate age-related changes during life history, histochemical demonstration of TNAP is severely hampered, particularly in the elderly, by technical difficulties associated with sectioning calcified tissue. Sufficient fixation must precede decalcification since poorly fixed bone tissue is exposed to the deleterious effects of decalcification reagents. In order to find a method that would allow cryosectioning of bone without loss of TNAP activity, we assessed the efficacy of different fixation reagents regarding the effects on structural integrity and TNAP activity using liver and osseous tissue from younger and older horses. The results of this study reveal that glyoxal-based fixatives sufficiently preserved bone tissue for successful cryosectioning without compromising TNAP activity. The method described combines the demonstration of TNAP activity with optimal preservation of tissue morphology in osseous tissue of younger and even of older mammals. As a model species, we selected horse bones in light of potentially higher similarities to ageing history and lifelong locomotion in humans as compared to other, mostly smaller, experimental model species with a much shorter life span and artificial locomotive activity when kept in cages. This may serve as a basis for future studies addressing the impact of different life traits in iconic, domestic and companion animals, which are often patients in veterinary medicine, as well as for basic research on human physiology and pathologies of the musculoskeletal system.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Animal Science and Zoology
Life Sciences > Endocrinology
Uncontrolled Keywords:Endocrinology
Language:English
Date:1 March 2018
Deposited On:15 Feb 2019 13:22
Last Modified:29 Jul 2020 09:28
Publisher:Elsevier
ISSN:0016-6480
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.ygcen.2017.05.008

Download

Full text not available from this repository.
View at publisher

Get full-text in a library