Abstract
Vladimir Voevodsky constructed a triangulated category of motives to “universally linearize the geometry” of algebraic varieties. In this thesis, I show that the geometry of a bigger class of objects, called Deligne-Mumford stacks, can be universally linearized using Voevodsky's triangulated category of motives. Also, I give a partial answer to a conjecture of Fabien Morel related to the connected component sheaf in motivic homotopy theory.
Vladimir Voevodsky hat eine triangulierte Kategorie von Motiven konstruiert, um die Geometrie algebraischer Varietäten "universell zu linearisieren". In dieser Dissertation zeige ich, dass auch die Geometrie einer umfangreicheren Klasse von Objekten, nämlich von Deligne-Mumford stacks, mit Hilfe der triangulierten Kategorie Voevodskys universell linearisiert werden kann. Ausserdem gebe ich eine partielle Antwort auf eine Vermutung von Fabien Morel in Bezug auf die Zusammenhangskomponenten-Garbe in motivischer Homotopie-Theorie.