Navigation auf zora.uzh.ch

Search

ZORA (Zurich Open Repository and Archive)

Some contributions to motives of Deligne-Mumford stacks and motivic homotopy theory

Choudhury, Utsav. Some contributions to motives of Deligne-Mumford stacks and motivic homotopy theory. 2013, University of Zurich, Faculty of Science.

Abstract

Vladimir Voevodsky constructed a triangulated category of motives to “universally linearize the geometry” of algebraic varieties. In this thesis, I show that the geometry of a bigger class of objects, called Deligne-Mumford stacks, can be universally linearized using Voevodsky's triangulated category of motives. Also, I give a partial answer to a conjecture of Fabien Morel related to the connected component sheaf in motivic homotopy theory.

Vladimir Voevodsky hat eine triangulierte Kategorie von Motiven konstruiert, um die Geometrie algebraischer Varietäten "universell zu linearisieren". In dieser Dissertation zeige ich, dass auch die Geometrie einer umfangreicheren Klasse von Objekten, nämlich von Deligne-Mumford stacks, mit Hilfe der triangulierten Kategorie Voevodskys universell linearisiert werden kann. Ausserdem gebe ich eine partielle Antwort auf eine Vermutung von Fabien Morel in Bezug auf die Zusammenhangskomponenten-Garbe in motivischer Homotopie-Theorie.

Additional indexing

Item Type:Dissertation (monographical)
Referees:Ayoub Joseph, Kresch Andrew
Communities & Collections:07 Faculty of Science > Institute of Mathematics
UZH Dissertations
Dewey Decimal Classification:510 Mathematics
Language:English
Place of Publication:Zürich
Date:2013
Deposited On:04 Apr 2019 10:10
Last Modified:15 Apr 2021 15:01
Number of Pages:75
OA Status:Green
Download PDF  'Some contributions to motives of Deligne-Mumford stacks and motivic homotopy theory'.
Preview
  • Content: Published Version
  • Language: English

Metadata Export

Statistics

Downloads

188 downloads since deposited on 04 Apr 2019
37 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications