Header

UZH-Logo

Maintenance Infos

Renal function and disease in zebrafish


Sugano, Yuya. Renal function and disease in zebrafish. 2015, University of Zurich, Faculty of Science.

Abstract

The kidney maintains homeostasis of our internal environment. In this thesis, the zebrafish was exploited as a model system to study human renal function and disease. The zebrafish is a useful vertebrate model for human kidney disease with an array of powerful genetic tools. The zebrafish pronephros is a simple and easily accessible system, yet with a high degree of conservation with the mammalian metanephric nephrons. Research presented here consists mainly of two parts; the glomerulus and the distal tubule. The glomerulus is the filtration apparatus of the nephron. Defective filtration leads to devel-­‐ opment of glomerular disease as represented by nephrotic syndrome. In this part of thesis (chapter 3), in order to identify novel genes that are relevant to nephrotic syndrome, the ze-­‐ brafish was first used as a screening system to isolate candidate genes from human datasets, including microarray data on kidney biopsies from human nephrotic patients. Rho-­‐GTPase activating protein, IQGAP2, was identified as a candidate gene that is enriched in the glome-­‐ ruli of the human kidney, downregulated in nephrotic patients. Subsequent functional analy-­‐ sis of IQGAP2 in the zebrafish revealed that disruption of IQGAP2 leads to a filtration defect of the glomerulus with effacement of podocyte foot processes, a characteristic pathological fea-­‐ ture of nephrotic syndrome. These results suggest that downregulation of IQGAP2 may be potentially relevant to pathogenesis of nephrotic syndrome in humans. In addition, this study demonstrates the strength of the zebrafish model to achieve rapid assessments of gene func-­‐ tion in vivo. In the second part of thesis (chapter 4 & 5), we established the zebrafish as a system to inves-­‐ tigate mechanisms underlying NaCl handling by the distal nephron. We particularly focused on sodium chloride cotransporter (NCC) expressed in the distal convoluted tubule in mam-­‐ malian kidneys. NCC plays a critical role in NaCl reabsorption as evidenced by the monogenic disorders with pronounced alterations in blood pressure resulting from dysregulated NCC. The zebrafish possess the orthologue of NCC that is expressed in the pronephric distal late segment, corresponding to the mammalian distal convoluted tubule. We developed antibodies against total and phosphorylated forms of zebrafish NCC. These antibodies recognized pres-­‐ ence of NCC in the pronephros and more importantly, phospho-­‐antibodies could also detect changes in phosphorylation status of NCC after high salinity treatments of zebrafish. This II Summary study shows that the zebrafish pronephros can be used to analyze activity of ion transporters and fundamental function of NCC in the distal tubule is likely conserved from teleosts to mammals. Furthermore, we generated transgenic zebrafish with mCherry expression in the distal segment using the promoter from slc12a3 that encodes for NCC. This transgenic line should serve as a valuable tool for detailed analyses of function of the distal segment as well as for monitoring development of the distal nephron.

Abstract

The kidney maintains homeostasis of our internal environment. In this thesis, the zebrafish was exploited as a model system to study human renal function and disease. The zebrafish is a useful vertebrate model for human kidney disease with an array of powerful genetic tools. The zebrafish pronephros is a simple and easily accessible system, yet with a high degree of conservation with the mammalian metanephric nephrons. Research presented here consists mainly of two parts; the glomerulus and the distal tubule. The glomerulus is the filtration apparatus of the nephron. Defective filtration leads to devel-­‐ opment of glomerular disease as represented by nephrotic syndrome. In this part of thesis (chapter 3), in order to identify novel genes that are relevant to nephrotic syndrome, the ze-­‐ brafish was first used as a screening system to isolate candidate genes from human datasets, including microarray data on kidney biopsies from human nephrotic patients. Rho-­‐GTPase activating protein, IQGAP2, was identified as a candidate gene that is enriched in the glome-­‐ ruli of the human kidney, downregulated in nephrotic patients. Subsequent functional analy-­‐ sis of IQGAP2 in the zebrafish revealed that disruption of IQGAP2 leads to a filtration defect of the glomerulus with effacement of podocyte foot processes, a characteristic pathological fea-­‐ ture of nephrotic syndrome. These results suggest that downregulation of IQGAP2 may be potentially relevant to pathogenesis of nephrotic syndrome in humans. In addition, this study demonstrates the strength of the zebrafish model to achieve rapid assessments of gene func-­‐ tion in vivo. In the second part of thesis (chapter 4 & 5), we established the zebrafish as a system to inves-­‐ tigate mechanisms underlying NaCl handling by the distal nephron. We particularly focused on sodium chloride cotransporter (NCC) expressed in the distal convoluted tubule in mam-­‐ malian kidneys. NCC plays a critical role in NaCl reabsorption as evidenced by the monogenic disorders with pronounced alterations in blood pressure resulting from dysregulated NCC. The zebrafish possess the orthologue of NCC that is expressed in the pronephric distal late segment, corresponding to the mammalian distal convoluted tubule. We developed antibodies against total and phosphorylated forms of zebrafish NCC. These antibodies recognized pres-­‐ ence of NCC in the pronephros and more importantly, phospho-­‐antibodies could also detect changes in phosphorylation status of NCC after high salinity treatments of zebrafish. This II Summary study shows that the zebrafish pronephros can be used to analyze activity of ion transporters and fundamental function of NCC in the distal tubule is likely conserved from teleosts to mammals. Furthermore, we generated transgenic zebrafish with mCherry expression in the distal segment using the promoter from slc12a3 that encodes for NCC. This transgenic line should serve as a valuable tool for detailed analyses of function of the distal segment as well as for monitoring development of the distal nephron.

Statistics

Downloads

40 downloads since deposited on 22 Mar 2019
38 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Dissertation (monographical)
Referees:Neuhauss Stephan, Loffing Johannes
Communities & Collections:UZH Dissertations
Dewey Decimal Classification:Unspecified
Language:English
Place of Publication:Zürich
Date:2015
Deposited On:22 Mar 2019 15:45
Last Modified:25 Sep 2019 00:14
Number of Pages:92
OA Status:Green
Related URLs:https://www.recherche-portal.ch/primo-explore/fulldisplay?docid=ebi01_prod010567060&context=L&vid=ZAD&search_scope=default_scope&tab=default_tab&lang=de_DE (Library Catalogue)

Download

Green Open Access

Download PDF  'Renal function and disease in zebrafish'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 37MB