Header

UZH-Logo

Maintenance Infos

No mass extinction for land plants at the Permian–Triassic transition


Nowak, Hendrik; Schneebeli-Hermann, Elke; Kustatscher, Evelyn (2019). No mass extinction for land plants at the Permian–Triassic transition. Nature Communications, 10(1):384-391.

Abstract

The most severe mass extinction among animals took place in the latest Permian (ca. 252 million years ago). Due to scarce and impoverished fossil floras from the earliest Triassic, the common perception has been that land plants likewise suffered a mass extinction, but doubts remained. Here we use global occurrence data of both plant macro- and microfossils to analyse plant biodiversity development across the Permian–Triassic boundary. We show that the plant fossil record is strongly biased and that evidence for a mass extinction among plants in the latest Permian is not robust. The taxonomic diversities of gymnosperm macrofossils and of the pollen produced by this group are particularly incongruent. Our results indicate that gymnosperm macrofossils are considerably undersampled for the Early Triassic, which creates the impression of increased gymnosperm extinction in the latest Permian.

Abstract

The most severe mass extinction among animals took place in the latest Permian (ca. 252 million years ago). Due to scarce and impoverished fossil floras from the earliest Triassic, the common perception has been that land plants likewise suffered a mass extinction, but doubts remained. Here we use global occurrence data of both plant macro- and microfossils to analyse plant biodiversity development across the Permian–Triassic boundary. We show that the plant fossil record is strongly biased and that evidence for a mass extinction among plants in the latest Permian is not robust. The taxonomic diversities of gymnosperm macrofossils and of the pollen produced by this group are particularly incongruent. Our results indicate that gymnosperm macrofossils are considerably undersampled for the Early Triassic, which creates the impression of increased gymnosperm extinction in the latest Permian.

Statistics

Citations

Dimensions.ai Metrics
39 citations in Web of Science®
42 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

36 downloads since deposited on 01 Mar 2019
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Paleontological Institute and Museum
Dewey Decimal Classification:560 Fossils & prehistoric life
Scopus Subject Areas:Physical Sciences > General Chemistry
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Physical Sciences > General Physics and Astronomy
Uncontrolled Keywords:General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry
Language:English
Date:1 December 2019
Deposited On:01 Mar 2019 09:07
Last Modified:15 Apr 2020 22:58
Publisher:Nature Publishing Group
ISSN:2041-1723
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s41467-018-07945-w

Download

Gold Open Access

Download PDF  'No mass extinction for land plants at the Permian–Triassic transition'.
Preview
Content: Published Version
Filetype: PDF
Size: 837kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)