Header

UZH-Logo

Maintenance Infos

Environmental change and predator diversity drive alpha and beta diversity in freshwater macro and microorganisms


Antiqueira, Pablo Augusto P; Petchey, Owen L; dos Santos, Viviane Piccin; de Oliveira, Valéria Maia; Romero, Gustavo Quevedo (2018). Environmental change and predator diversity drive alpha and beta diversity in freshwater macro and microorganisms. Global Change Biology, 24(8):3715-3728.

Abstract

Global biodiversity is eroding due to anthropogenic causes, such as climate change, habitat loss, and trophic simplification of biological communities. Most studies address only isolated causes within a single group of organisms; however, biological groups of different trophic levels may respond in particular ways to different environmental impacts. Our study used natural microcosms to investigate the predicted individual and interactive effects of warming, changes in top predator diversity, and habitat size on the alpha and beta diversity of macrofauna, microfauna, and bacteria. Alpha diversity (i.e., richness within each bromeliad) generally explained a larger proportion of the gamma diversity (partitioned in alpha and beta diversity). Overall, dissimilarity between communities occurred due to species turnover and not species loss (nestedness). Nevertheless, the three biological groups responded differently to each environmental stressor. Microfauna were the most sensitive group, with alpha and beta diversity being affected by environmental changes (warming and habitat size) and trophic structure (diversity of top predators). Macrofauna alpha and beta diversity was sensitive to changes in predator diversity and habitat size, but not warming. In contrast, the bacterial community was not influenced by the treatments. The community of each biological group was not mutually concordant with the environmental and trophic changes. Our results demonstrate that distinct anthropogenic impacts differentially affect the components of macro and microorganism diversity through direct and indirect effects (i.e., bottom‐up and top‐down effects). Therefore, a multitrophic and multispecies approach is necessary to assess the effects of different anthropogenic impacts on biodiversity.

Abstract

Global biodiversity is eroding due to anthropogenic causes, such as climate change, habitat loss, and trophic simplification of biological communities. Most studies address only isolated causes within a single group of organisms; however, biological groups of different trophic levels may respond in particular ways to different environmental impacts. Our study used natural microcosms to investigate the predicted individual and interactive effects of warming, changes in top predator diversity, and habitat size on the alpha and beta diversity of macrofauna, microfauna, and bacteria. Alpha diversity (i.e., richness within each bromeliad) generally explained a larger proportion of the gamma diversity (partitioned in alpha and beta diversity). Overall, dissimilarity between communities occurred due to species turnover and not species loss (nestedness). Nevertheless, the three biological groups responded differently to each environmental stressor. Microfauna were the most sensitive group, with alpha and beta diversity being affected by environmental changes (warming and habitat size) and trophic structure (diversity of top predators). Macrofauna alpha and beta diversity was sensitive to changes in predator diversity and habitat size, but not warming. In contrast, the bacterial community was not influenced by the treatments. The community of each biological group was not mutually concordant with the environmental and trophic changes. Our results demonstrate that distinct anthropogenic impacts differentially affect the components of macro and microorganism diversity through direct and indirect effects (i.e., bottom‐up and top‐down effects). Therefore, a multitrophic and multispecies approach is necessary to assess the effects of different anthropogenic impacts on biodiversity.

Statistics

Citations

Dimensions.ai Metrics
18 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 21 Feb 2019
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Physical Sciences > Global and Planetary Change
Physical Sciences > Environmental Chemistry
Physical Sciences > Ecology
Physical Sciences > General Environmental Science
Uncontrolled Keywords:Ecology, Global and Planetary Change, General Environmental Science, Environmental Chemistry
Language:English
Date:1 August 2018
Deposited On:21 Feb 2019 10:40
Last Modified:21 Sep 2023 01:38
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1354-1013
OA Status:Closed
Publisher DOI:https://doi.org/10.1111/gcb.14314