Header

UZH-Logo

Maintenance Infos

Genetic Determinants and Prediction of Antibiotic Resistance Phenotypes in Helicobacter pylori


Lauener, Francis N; Imkamp, Frank; Lehours, Philippe; Buissonnière, Alice; Benejat, Lucie; Zbinden, Reinhard; Keller, Peter M; Wagner, Karoline (2019). Genetic Determinants and Prediction of Antibiotic Resistance Phenotypes in Helicobacter pylori. Journal of clinical medicine, 8:53.

Abstract

Helicobacter pylori is a major human pathogen. Diagnosis of H. pylori infection and determination of its antibiotic susceptibility still mainly rely on culture and phenotypic drug susceptibility testing (DST) that is time-consuming and laborious. Whole genome sequencing (WGS) has recently emerged in medical microbiology as a diagnostic tool for reliable drug resistance prediction in bacterial pathogens. The aim of this study was to compare phenotypic DST results with the predictions based on the presence of genetic determinants identified in the H. pylori genome using WGS. Phenotypic resistance to clarithromycin, metronidazole, tetracycline, levofloxacin, and rifampicin was determined in 140 clinical H. pylori isolates by E-Test®, and the occurrence of certain single nucleotide polymorphisms (SNPs) in target genes was determined by WGS. Overall, there was a high congruence of >99% between phenotypic DST results for clarithromycin, levofloxacin, and rifampicin and SNPs identified in the 23S rRNA, gyrA, and rpoB gene. However, it was not possible to infer a resistance phenotype for metronidazole based on the occurrence of distinct SNPs in frxA and rdxA. All 140 H. pylori isolates analysed in this study were susceptible to tetracycline, which was in accordance with the absence of double or triple nucleotide substitutions in the 16S rRNA gene.

Abstract

Helicobacter pylori is a major human pathogen. Diagnosis of H. pylori infection and determination of its antibiotic susceptibility still mainly rely on culture and phenotypic drug susceptibility testing (DST) that is time-consuming and laborious. Whole genome sequencing (WGS) has recently emerged in medical microbiology as a diagnostic tool for reliable drug resistance prediction in bacterial pathogens. The aim of this study was to compare phenotypic DST results with the predictions based on the presence of genetic determinants identified in the H. pylori genome using WGS. Phenotypic resistance to clarithromycin, metronidazole, tetracycline, levofloxacin, and rifampicin was determined in 140 clinical H. pylori isolates by E-Test®, and the occurrence of certain single nucleotide polymorphisms (SNPs) in target genes was determined by WGS. Overall, there was a high congruence of >99% between phenotypic DST results for clarithromycin, levofloxacin, and rifampicin and SNPs identified in the 23S rRNA, gyrA, and rpoB gene. However, it was not possible to infer a resistance phenotype for metronidazole based on the occurrence of distinct SNPs in frxA and rdxA. All 140 H. pylori isolates analysed in this study were susceptible to tetracycline, which was in accordance with the absence of double or triple nucleotide substitutions in the 16S rRNA gene.

Statistics

Citations

Dimensions.ai Metrics
73 citations in Web of Science®
79 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

34 downloads since deposited on 31 Jan 2019
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:7 January 2019
Deposited On:31 Jan 2019 14:44
Last Modified:02 Dec 2023 08:04
Publisher:MDPI Publishing
ISSN:2077-0383
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/jcm8010053
PubMed ID:30621024
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)