Header

UZH-Logo

Maintenance Infos

Human Pavlovian fear conditioning conforms to probabilistic learning


Tzovara, Athina; Korn, Christoph W; Bach, Dominik R (2018). Human Pavlovian fear conditioning conforms to probabilistic learning. PLoS Computational Biology, 14(8):e1006243.

Abstract

Learning to predict threat from environmental cues is a fundamental skill in changing environments. This aversive learning process is exemplified by Pavlovian threat conditioning. Despite a plethora of studies on the neural mechanisms supporting the formation of associations between neutral and aversive events, our computational understanding of this process is fragmented. Importantly, different computational models give rise to different and partly opposing predictions for the trial-by-trial dynamics of learning, for example expressed in the activity of the autonomic nervous system (ANS). Here, we investigate human ANS responses to conditioned stimuli during Pavlovian fear conditioning. To obtain precise, trial-by-trial, single-subject estimates of ANS responses, we build on a statistical framework for psychophysiological modelling. We then consider previously proposed non-probabilistic models, a simple probabilistic model, and non-learning models, as well as different observation functions to link learning models with ANS activity. Across three experiments, and both for skin conductance (SCR) and pupil size responses (PSR), a probabilistic learning model best explains ANS responses. Notably, SCR and PSR reflect different quantities of the same model: SCR track a mixture of expected outcome and uncertainty, while PSR track expected outcome alone. In summary, by combining psychophysiological modelling with computational learning theory, we provide systematic evidence that the formation and maintenance of Pavlovian threat predictions in humans may rely on probabilistic inference and includes estimation of uncertainty. This could inform theories of neural implementation of aversive learning.

Abstract

Learning to predict threat from environmental cues is a fundamental skill in changing environments. This aversive learning process is exemplified by Pavlovian threat conditioning. Despite a plethora of studies on the neural mechanisms supporting the formation of associations between neutral and aversive events, our computational understanding of this process is fragmented. Importantly, different computational models give rise to different and partly opposing predictions for the trial-by-trial dynamics of learning, for example expressed in the activity of the autonomic nervous system (ANS). Here, we investigate human ANS responses to conditioned stimuli during Pavlovian fear conditioning. To obtain precise, trial-by-trial, single-subject estimates of ANS responses, we build on a statistical framework for psychophysiological modelling. We then consider previously proposed non-probabilistic models, a simple probabilistic model, and non-learning models, as well as different observation functions to link learning models with ANS activity. Across three experiments, and both for skin conductance (SCR) and pupil size responses (PSR), a probabilistic learning model best explains ANS responses. Notably, SCR and PSR reflect different quantities of the same model: SCR track a mixture of expected outcome and uncertainty, while PSR track expected outcome alone. In summary, by combining psychophysiological modelling with computational learning theory, we provide systematic evidence that the formation and maintenance of Pavlovian threat predictions in humans may rely on probabilistic inference and includes estimation of uncertainty. This could inform theories of neural implementation of aversive learning.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

2 downloads since deposited on 22 Feb 2019
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Psychiatry, Psychotherapy, and Psychosomatics
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:August 2018
Deposited On:22 Feb 2019 09:09
Last Modified:22 Feb 2019 09:12
Publisher:Public Library of Science (PLoS)
ISSN:1553-734X
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pcbi.1006243
PubMed ID:30169519

Download

Download PDF  'Human Pavlovian fear conditioning conforms to probabilistic learning'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)