Header

UZH-Logo

Maintenance Infos

Circulating blood cells and extracellular vesicles in acute cardioprotection


Davidson, Sean M; Andreadou, Ioanna; Barile, Lucio; Birnbaum, Yochai; Cabrera-Fuentes, Hector A; Cohen, Michael V; Downey, James M; Girao, Henrique; Pagliaro, Pasquale; Penna, Claudia; Pernow, John; Preissner, Klaus T; Ferdinandy, Peter (2019). Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovascular Research, 115(7):1156-1166.

Abstract

During an ST-elevation myocardial infarction (STEMI), the myocardium undergoes a prolonged period of ischaemia. Reperfusion therapy is essential to minimize cardiac injury but can paradoxically cause further damage. Experimental procedures to limit ischaemia and reperfusion (IR) injury have tended to focus on the cardiomyocytes since they are crucial for cardiac function. However, there is increasing evidence that non-cardiomyocyte resident cells in the heart (as discussed in a separate review in this Spotlight series) as well as circulating cells and factors play important roles in this pathology. For example, erythrocytes, in addition to their main oxygen-ferrying role, can protect the heart from IR injury via the export of nitric oxide bioactivity. Platelets are well-known to be involved in haemostasis and thrombosis, but beyond these roles, they secrete numerous factors including sphingosine-1 phosphate (S1P), platelet activating factor (PAF) and cytokines that can all strongly influence the development of IR injury. This is particularly relevant given that most STEMI patients receive at least one type of platelet inhibitor. Moreover, there are large numbers of circulating vesicles in the blood, including microvesicles and exosomes, which can exert both beneficial and detrimental effects on IR injury. Some of these effects are mediated by the transfer of miRNA to the heart. Synthetic miRNA molecules may offer an alternative approach to limiting the response to IR injury. We discuss these and other circulating factors, focussing on potential therapeutic targets relevant to IR injury. Given the prevalence of co-morbidities such as diabetes in the target patient population, their influence will also be discussed. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.

Abstract

During an ST-elevation myocardial infarction (STEMI), the myocardium undergoes a prolonged period of ischaemia. Reperfusion therapy is essential to minimize cardiac injury but can paradoxically cause further damage. Experimental procedures to limit ischaemia and reperfusion (IR) injury have tended to focus on the cardiomyocytes since they are crucial for cardiac function. However, there is increasing evidence that non-cardiomyocyte resident cells in the heart (as discussed in a separate review in this Spotlight series) as well as circulating cells and factors play important roles in this pathology. For example, erythrocytes, in addition to their main oxygen-ferrying role, can protect the heart from IR injury via the export of nitric oxide bioactivity. Platelets are well-known to be involved in haemostasis and thrombosis, but beyond these roles, they secrete numerous factors including sphingosine-1 phosphate (S1P), platelet activating factor (PAF) and cytokines that can all strongly influence the development of IR injury. This is particularly relevant given that most STEMI patients receive at least one type of platelet inhibitor. Moreover, there are large numbers of circulating vesicles in the blood, including microvesicles and exosomes, which can exert both beneficial and detrimental effects on IR injury. Some of these effects are mediated by the transfer of miRNA to the heart. Synthetic miRNA molecules may offer an alternative approach to limiting the response to IR injury. We discuss these and other circulating factors, focussing on potential therapeutic targets relevant to IR injury. Given the prevalence of co-morbidities such as diabetes in the target patient population, their influence will also be discussed. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.

Statistics

Citations

Dimensions.ai Metrics
18 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

14 downloads since deposited on 22 Feb 2019
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Cardiocentro Ticino
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Physiology
Health Sciences > Cardiology and Cardiovascular Medicine
Health Sciences > Physiology (medical)
Language:English
Date:1 June 2019
Deposited On:22 Feb 2019 09:28
Last Modified:15 Apr 2020 23:01
Publisher:Oxford University Press
ISSN:0008-6363
OA Status:Green
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/cvr/cvy314
PubMed ID:30590395

Download

Green Open Access

Download PDF  'Circulating blood cells and extracellular vesicles in acute cardioprotection'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher