Header

UZH-Logo

Maintenance Infos

Mutational spectrum of PTS gene and in silico pathological assessment of a novel variant in Mexico


Abstract

BACKGROUND
Tetrahydrobiopterin (BH4) is the cofactor for 6-pyruvoyl-tetrahydropterin synthase (PTPS); it is involved in BH4 biosynthesis and is encoded by PTS gene. Its deficiency (PTPSD) is characterized by hyperphenylalaninemia (HPA) and deficit in central monoamine neurotransmitters. We describe the clinical and mutational spectrum of five patients with PTPSD, from four unrelated Mexican families. All patients had symptomatic diagnosis and presented severe early neurological manifestations and HPA.

METHODS
Clinical and biochemical data from studied patients were recorded. Responsible PTPSD genotypes was determined by direct and bidirectional Sanger DNA sequencing of the six PTS coding exons and their exon-intron borders, and these were directly searched in the available relatives. The novel PTS missense variant [NM_3000317.2:331G > T, p.(Ala111Ser)] was subjected to in silico, to predict a possible deleterious effect.

RESULTS
Diminished fetal movements were perceived as a uniform characteristic in the studied group. DNA sequencing showed two known p.(Arg25∗) and p.(Val132TyrFs∗19) and the novel missense p.(Ala111Ser) PTS variants, the latter representing potentially a frequent PTPSD-responsible allele (50%, 4/8) in Mexican patients. In silico protein modeling analysis of the p.(Ala111Ser) variant revealed loss of hydrophobic interactions between the alanine and neighboring valines, suggesting that these changes in polarity may be detrimental for enzyme function, structure and/or stability.

CONCLUSIONS
This work contributes to the knowledge of PTPS molecular spectrum. The delayed diagnosis of these patients emphasizes the importance of considering BH4 metabolism defects in the differential diagnosis of HPA, especially for countries that are beginning their HPA newborn screening programs.

Abstract

BACKGROUND
Tetrahydrobiopterin (BH4) is the cofactor for 6-pyruvoyl-tetrahydropterin synthase (PTPS); it is involved in BH4 biosynthesis and is encoded by PTS gene. Its deficiency (PTPSD) is characterized by hyperphenylalaninemia (HPA) and deficit in central monoamine neurotransmitters. We describe the clinical and mutational spectrum of five patients with PTPSD, from four unrelated Mexican families. All patients had symptomatic diagnosis and presented severe early neurological manifestations and HPA.

METHODS
Clinical and biochemical data from studied patients were recorded. Responsible PTPSD genotypes was determined by direct and bidirectional Sanger DNA sequencing of the six PTS coding exons and their exon-intron borders, and these were directly searched in the available relatives. The novel PTS missense variant [NM_3000317.2:331G > T, p.(Ala111Ser)] was subjected to in silico, to predict a possible deleterious effect.

RESULTS
Diminished fetal movements were perceived as a uniform characteristic in the studied group. DNA sequencing showed two known p.(Arg25∗) and p.(Val132TyrFs∗19) and the novel missense p.(Ala111Ser) PTS variants, the latter representing potentially a frequent PTPSD-responsible allele (50%, 4/8) in Mexican patients. In silico protein modeling analysis of the p.(Ala111Ser) variant revealed loss of hydrophobic interactions between the alanine and neighboring valines, suggesting that these changes in polarity may be detrimental for enzyme function, structure and/or stability.

CONCLUSIONS
This work contributes to the knowledge of PTPS molecular spectrum. The delayed diagnosis of these patients emphasizes the importance of considering BH4 metabolism defects in the differential diagnosis of HPA, especially for countries that are beginning their HPA newborn screening programs.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:August 2018
Deposited On:30 Jan 2019 11:22
Last Modified:25 Sep 2019 00:17
Publisher:Elsevier
ISSN:0387-7604
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.braindev.2018.03.014
PubMed ID:29685341

Download

Full text not available from this repository.
View at publisher

Get full-text in a library