Header

UZH-Logo

Maintenance Infos

Balance, gait, and falls in spinal cord injury


Wirz, Markus; van Hedel, Hubertus J A (2018). Balance, gait, and falls in spinal cord injury. Handbook of Clinical Neurology, 159:367-384.

Abstract

This chapter covers balance, gait, and falls in individuals with spinal cord injury (SCI) from a clinical perspective. First, the consequences of an SCI on functioning are explained, including etiology, clinical presentation, classification, and epidemiologic data. Then, the specific aspects of balance disorders, gait disorders, and falls are discussed with respect to motor complete (cSCI) and incomplete (iSCI) SCI. Typically, these activities are affected by impaired afferent and efferent nerves, but not by central nervous processing. Performance of daily life activities in cSCI depends on the ability to control the interaction between the center of mass and the base of support or limits of stability. In iSCI, impaired proprioception and muscle strength are important factors for completing balancing tasks and for walking. Falls are common in patients with SCI. Subsequent sections describe therapy approaches aimed at modifying balance, gait, and the risk for falls by means of therapeutic exercises, assistive devices like robots or functional electric stimulation, and environmental adaptations. The last part covers recent developments and future directions. These encompass interventions for maximizing residual neural function and regeneration of axons, as well as technical solutions like epidural or intraspinal electric stimulation, powered exoskeletons, and brain computer interfaces.

Abstract

This chapter covers balance, gait, and falls in individuals with spinal cord injury (SCI) from a clinical perspective. First, the consequences of an SCI on functioning are explained, including etiology, clinical presentation, classification, and epidemiologic data. Then, the specific aspects of balance disorders, gait disorders, and falls are discussed with respect to motor complete (cSCI) and incomplete (iSCI) SCI. Typically, these activities are affected by impaired afferent and efferent nerves, but not by central nervous processing. Performance of daily life activities in cSCI depends on the ability to control the interaction between the center of mass and the base of support or limits of stability. In iSCI, impaired proprioception and muscle strength are important factors for completing balancing tasks and for walking. Falls are common in patients with SCI. Subsequent sections describe therapy approaches aimed at modifying balance, gait, and the risk for falls by means of therapeutic exercises, assistive devices like robots or functional electric stimulation, and environmental adaptations. The last part covers recent developments and future directions. These encompass interventions for maximizing residual neural function and regeneration of axons, as well as technical solutions like epidural or intraspinal electric stimulation, powered exoskeletons, and brain computer interfaces.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Neurology
Health Sciences > Neurology (clinical)
Language:English
Date:2018
Deposited On:29 Jan 2019 13:30
Last Modified:29 Jul 2020 09:39
Publisher:Elsevier
ISSN:0072-9752
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/B978-0-444-63916-5.00024-0
PubMed ID:30482328

Download

Full text not available from this repository.
View at publisher

Get full-text in a library