Header

UZH-Logo

Maintenance Infos

Multimass spherical structure models for N-body simulations


Zemp, M; Moore, B; Stadel, J; Carollo, C M; Madau, P (2008). Multimass spherical structure models for N-body simulations. Monthly Notices of the Royal Astronomical Society, 386(3):1543-1556.

Abstract

We present a simple and efficient method to set up spherical structure models for N-body simulations with a multimass technique. This technique reduces by a substantial factor the computer run time needed in order to resolve a given scale as compared to single-mass models. It therefore allows to resolve smaller scales in N-body simulations for a given computer run time. Here, we present several models with an effective resolution of up to 1.68 × 109 particles within their virial radius which are stable over cosmologically relevant time-scales. As an application, we confirm the theoretical prediction by Dehnen that in mergers of collisionless structures like dark matter haloes always the cusp of the steepest progenitor is preserved. We model each merger progenitor with an effective number of particles of approximately 108 particles. We also find that in a core–core merger the central density approximately doubles whereas in the cusp–cusp case the central density only increases by approximately 50 per cent. This may suggest that the central regions of flat structures are better protected and get less energy input through the merger process.

Abstract

We present a simple and efficient method to set up spherical structure models for N-body simulations with a multimass technique. This technique reduces by a substantial factor the computer run time needed in order to resolve a given scale as compared to single-mass models. It therefore allows to resolve smaller scales in N-body simulations for a given computer run time. Here, we present several models with an effective resolution of up to 1.68 × 109 particles within their virial radius which are stable over cosmologically relevant time-scales. As an application, we confirm the theoretical prediction by Dehnen that in mergers of collisionless structures like dark matter haloes always the cusp of the steepest progenitor is preserved. We model each merger progenitor with an effective number of particles of approximately 108 particles. We also find that in a core–core merger the central density approximately doubles whereas in the cusp–cusp case the central density only increases by approximately 50 per cent. This may suggest that the central regions of flat structures are better protected and get less energy input through the merger process.

Statistics

Citations

Dimensions.ai Metrics
34 citations in Web of Science®
35 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

198 downloads since deposited on 10 Mar 2009
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Astronomy and Astrophysics
Physical Sciences > Space and Planetary Science
Language:English
Date:May 2008
Deposited On:10 Mar 2009 17:08
Last Modified:23 Jan 2022 13:44
Publisher:Wiley-Blackwell
ISSN:0035-8711
Additional Information:The definitive version is available at www.blackwell-synergy.com
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1111/j.1365-2966.2008.13126.x
Related URLs:http://arxiv.org/abs/0710.3189
  • Content: Accepted Version
  • Language: English
  • Description: Accepted manuscript, Version 2
  • Content: Accepted Version
  • Description: Accepted manuscript, Version 1
  • Content: Published Version
  • Language: English
  • Description: Nationallizenz 142-005