Header

UZH-Logo

Maintenance Infos

Clinical Validation of a Novel High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction.


Abstract

BACKGROUND Clinical performance of the novel high-sensitivity cardiac troponin I (Siemens-hs-cTnI-Centaur) assay is unknown. We aimed to clinically validate the Siemens-hs-cTnI-Centaur assay and develop 0/1-h and 0/2-h algorithms.
METHODS We enrolled patients presenting to the emergency department with symptoms suggestive of acute myocardial infarction (AMI). Final diagnoses were centrally adjudicated by 2 independent cardiologists including all clinical information twice: first, using serial hs-cTnT (Roche-Elecsys, primary analysis); second, using hs-cTnI (Abbott-Architect, secondary analysis) measurements in addition to the clinically applied (hs)-cTn. Siemens-hs-cTnI-Centaur was measured at presentation, 1 h, and 2 h. The primary objective was a direct comparison of diagnostic accuracy, quantified by the area under the ROC curve (AUC), of Siemens-hs-cTnI-Centaur vs the 2 established hs-cTn assays (Roche-hs-cTnT-Elecsys, Abbott-hs-cTnI-Architect). Secondary objectives included the development of Siemens-hs-cTnI-Centaur-specific 0/1-h and 0/2-h algorithms.
RESULTS AMI was the final diagnosis in 318 of 1755 (18%) patients (using Roche-hs-cTnT-Elecsys for adjudication). The AUC at presentation for Siemens-hs-cTnI-Centaur was 0.94 (95% CI, 0.92-0.96) and comparable with 0.95 (95% CI, 0.93-0.97) for Roche-hs-cTnT-Elecsys and 0.93 (95% CI, 0.90-0.96) for Abbott-hs-cTnI-Architect. Applying the derived Siemens-hs-cTnI-Centaur 0/1-h algorithm to the validation cohort, 46% of patients were ruled out (sensitivity, 99.1%; 95% CI, 95.3-100), and 18% of patients were ruled in (specificity, 94.1%; 95% CI, 91.8-95.9). The Siemens-hs-cTnI-Centaur 0/2-h algorithm ruled out 55% of patients (sensitivity, 100%; 95% CI, 94.1-100), and ruled in 18% of patients (specificity, 96.0%; 95% CI, 93.1-97.9). Findings were confirmed in the secondary analyses using serial measurements of Abbott-hs-cTnI-Architect for adjudication.
CONCLUSIONS Diagnostic accuracy and clinical utility of the novel Siemens-hs-cTnI-Centaur assay are high and comparable with the established hs-cTn assays. ClinicalTrials.gov Identifier: NCT00470587.

Abstract

BACKGROUND Clinical performance of the novel high-sensitivity cardiac troponin I (Siemens-hs-cTnI-Centaur) assay is unknown. We aimed to clinically validate the Siemens-hs-cTnI-Centaur assay and develop 0/1-h and 0/2-h algorithms.
METHODS We enrolled patients presenting to the emergency department with symptoms suggestive of acute myocardial infarction (AMI). Final diagnoses were centrally adjudicated by 2 independent cardiologists including all clinical information twice: first, using serial hs-cTnT (Roche-Elecsys, primary analysis); second, using hs-cTnI (Abbott-Architect, secondary analysis) measurements in addition to the clinically applied (hs)-cTn. Siemens-hs-cTnI-Centaur was measured at presentation, 1 h, and 2 h. The primary objective was a direct comparison of diagnostic accuracy, quantified by the area under the ROC curve (AUC), of Siemens-hs-cTnI-Centaur vs the 2 established hs-cTn assays (Roche-hs-cTnT-Elecsys, Abbott-hs-cTnI-Architect). Secondary objectives included the development of Siemens-hs-cTnI-Centaur-specific 0/1-h and 0/2-h algorithms.
RESULTS AMI was the final diagnosis in 318 of 1755 (18%) patients (using Roche-hs-cTnT-Elecsys for adjudication). The AUC at presentation for Siemens-hs-cTnI-Centaur was 0.94 (95% CI, 0.92-0.96) and comparable with 0.95 (95% CI, 0.93-0.97) for Roche-hs-cTnT-Elecsys and 0.93 (95% CI, 0.90-0.96) for Abbott-hs-cTnI-Architect. Applying the derived Siemens-hs-cTnI-Centaur 0/1-h algorithm to the validation cohort, 46% of patients were ruled out (sensitivity, 99.1%; 95% CI, 95.3-100), and 18% of patients were ruled in (specificity, 94.1%; 95% CI, 91.8-95.9). The Siemens-hs-cTnI-Centaur 0/2-h algorithm ruled out 55% of patients (sensitivity, 100%; 95% CI, 94.1-100), and ruled in 18% of patients (specificity, 96.0%; 95% CI, 93.1-97.9). Findings were confirmed in the secondary analyses using serial measurements of Abbott-hs-cTnI-Architect for adjudication.
CONCLUSIONS Diagnostic accuracy and clinical utility of the novel Siemens-hs-cTnI-Centaur assay are high and comparable with the established hs-cTn assays. ClinicalTrials.gov Identifier: NCT00470587.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 28 Feb 2019
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Clinical Chemistry
Dewey Decimal Classification:610 Medicine & health
540 Chemistry
Language:English
Date:September 2018
Deposited On:28 Feb 2019 12:15
Last Modified:28 Feb 2019 12:18
Publisher:American Association for Clinical Chemistry
ISSN:0009-9147
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1373/clinchem.2018.286906
PubMed ID:29941469

Download