Header

UZH-Logo

Maintenance Infos

Cardiovascular tissue engineering: From basic science to clinical application


Fioretta, E S; von Boehmer, L; Motta, S E; Lintas, V; Hoerstrup, S P; Emmert, M Y (2019). Cardiovascular tissue engineering: From basic science to clinical application. Experimental Gerontology, 117:1-18.

Abstract

Valvular heart disease is an increasing population health problem and, especially in the elderly, a significant cause of morbidity and mortality. The current treatment options, such as mechanical and bioprosthetic heart valve replacements, have significant restrictions and limitations. Considering the increased life expectancy of our aging population, there is an urgent need for novel heart valve concepts that remain functional throughout life to prevent the need for reoperation. Heart valve tissue engineering aims to overcome these constraints by creating regenerative, self-repairing valve substitutes with life-long durability. In this review, we give an overview of advances in the development of tissue engineered heart valves, and describe the steps required to design and validate a novel valve prosthesis before reaching first-in-men clinical trials. In-silico and in-vitro models are proposed as tools for the assessment of valve design, functionality and compatibility, while in-vivo preclinical models are required to confirm the remodeling and growth potential of the tissue engineered heart valves. An overview of the tissue engineered heart valve studies that have reached clinical translation is also presented. Final remarks highlight the possibilities as well as the obstacles to overcome in translating heart valve prostheses into clinical application.

Abstract

Valvular heart disease is an increasing population health problem and, especially in the elderly, a significant cause of morbidity and mortality. The current treatment options, such as mechanical and bioprosthetic heart valve replacements, have significant restrictions and limitations. Considering the increased life expectancy of our aging population, there is an urgent need for novel heart valve concepts that remain functional throughout life to prevent the need for reoperation. Heart valve tissue engineering aims to overcome these constraints by creating regenerative, self-repairing valve substitutes with life-long durability. In this review, we give an overview of advances in the development of tissue engineered heart valves, and describe the steps required to design and validate a novel valve prosthesis before reaching first-in-men clinical trials. In-silico and in-vitro models are proposed as tools for the assessment of valve design, functionality and compatibility, while in-vivo preclinical models are required to confirm the remodeling and growth potential of the tissue engineered heart valves. An overview of the tissue engineered heart valve studies that have reached clinical translation is also presented. Final remarks highlight the possibilities as well as the obstacles to overcome in translating heart valve prostheses into clinical application.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2019
Deposited On:28 Feb 2019 13:55
Last Modified:25 Sep 2019 00:20
Publisher:Elsevier
ISSN:0531-5565
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.exger.2018.03.022
PubMed ID:29604404

Download

Full text not available from this repository.
View at publisher

Get full-text in a library