Header

UZH-Logo

Maintenance Infos

Gas and multispecies dust dynamics in viscous protoplanetary discs: the importance of the dust back-reaction


Dipierro, Giovanni; Laibe, Guillaume; Alexander, Richard; Hutchison, Mark (2018). Gas and multispecies dust dynamics in viscous protoplanetary discs: the importance of the dust back-reaction. Monthly Notices of the Royal Astronomical Society, 479(3):4187-4206.

Abstract

We study the dynamics of a viscous protoplanetary disc hosting a population of dust grains with a range of sizes. We compute steady-state solutions and show that the radial motion of both the gas and the dust can deviate substantially from those for a single-size dust population. Although the aerodynamic drag from the dust on the gas is weaker than in the case where all grains are optimally coupled to the gas, the cumulative ‘back-reaction’ of the dust particles can still alter the gas dynamics significantly. In typical protoplanetary discs, the net effect of the dust back-reaction decreases the gas accretion flow compared to the dust-free (viscous) case, even for dust-to-gas ratios of the order of 1 per cent. In the outer disc, where dust grains are typically less strongly coupled to the gas and settle towards the midplane, the dust back-reaction can even drive outward gas flow. Moreover, the radial inward drift of large grains is reduced below the gas motion in the inner disc regions, while small dust grains follow the gas dynamics over all the disc extent. The resulting dust and gas dynamics can give rise to observable structures, such as gas and dust cavities. Our results show that the dust back-reaction can play a major role in both the dynamics and observational appearance of protoplanetary discs, and cannot be ignored in models of protoplanetary disc evolution.

Abstract

We study the dynamics of a viscous protoplanetary disc hosting a population of dust grains with a range of sizes. We compute steady-state solutions and show that the radial motion of both the gas and the dust can deviate substantially from those for a single-size dust population. Although the aerodynamic drag from the dust on the gas is weaker than in the case where all grains are optimally coupled to the gas, the cumulative ‘back-reaction’ of the dust particles can still alter the gas dynamics significantly. In typical protoplanetary discs, the net effect of the dust back-reaction decreases the gas accretion flow compared to the dust-free (viscous) case, even for dust-to-gas ratios of the order of 1 per cent. In the outer disc, where dust grains are typically less strongly coupled to the gas and settle towards the midplane, the dust back-reaction can even drive outward gas flow. Moreover, the radial inward drift of large grains is reduced below the gas motion in the inner disc regions, while small dust grains follow the gas dynamics over all the disc extent. The resulting dust and gas dynamics can give rise to observable structures, such as gas and dust cavities. Our results show that the dust back-reaction can play a major role in both the dynamics and observational appearance of protoplanetary discs, and cannot be ignored in models of protoplanetary disc evolution.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

5 downloads since deposited on 06 Mar 2019
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Uncontrolled Keywords:Space and Planetary Science, Astronomy and Astrophysics
Language:English
Date:21 September 2018
Deposited On:06 Mar 2019 16:10
Last Modified:17 Sep 2019 20:09
Publisher:Oxford University Press
ISSN:0035-8711
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/sty1701

Download

Download PDF  'Gas and multispecies dust dynamics in viscous protoplanetary discs: the importance of the dust back-reaction'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher