Header

UZH-Logo

Maintenance Infos

The 55 Cancri system reassessed


Bourrier, V; Dumusque, X; Dorn, C; Henry, G W; Astudillo-Defru, N; Rey, J; Benneke, B; Hébrard, G; Lovis, C; Demory, B O; Moutou, C; Ehrenreich, D (2018). The 55 Cancri system reassessed. Astronomy and Astrophysics, 619:A1.

Abstract

Orbiting a bright, nearby star the 55 Cnc system offers a rare opportunity to study a multiplanet system that has a wide range of planetary masses and orbital distances. Using two decades of photometry and spectroscopy data, we have measured the rotation of the host star and its solar-like magnetic cycle. Accounting for this cycle in our velocimetric analysis of the system allows us to revise the properties of the outermost giant planet and its four planetary companions. The innermost planet 55 Cnc e is an unusually close-in super-Earth, whose transits have allowed for detailed follow-up studies. Recent observations favor the presence of a substantial atmosphere yet its composition, and the nature of the planet, remain unknown. We combined our derived planet mass (Mp = 8.0 ± 0.3 MEarth) with refined measurement of its optical radius derived from HST/STIS observations (Rp = 1.88 ± 0.03 REarth over 530–750 nm) to revise the density of 55 Cnc e (ρ = 6.7 ± 0.4 g cm−3). Based on these revised properties we have characterized possible interiors of 55 Cnc e using a generalized Bayesian model. We confirm that the planet is likely surrounded by a heavyweight atmosphere, contributing a few percents of the planet radius. While we cannot exclude the presence of a water layer underneath the atmosphere, this scenario is unlikely given the observations of the planet across the entire spectrum and its strong irradiation. Follow-up observations of the system in photometry and in spectroscopy over different time-scales are needed to further investigate the nature and origin of this iconic super-Earth.

Abstract

Orbiting a bright, nearby star the 55 Cnc system offers a rare opportunity to study a multiplanet system that has a wide range of planetary masses and orbital distances. Using two decades of photometry and spectroscopy data, we have measured the rotation of the host star and its solar-like magnetic cycle. Accounting for this cycle in our velocimetric analysis of the system allows us to revise the properties of the outermost giant planet and its four planetary companions. The innermost planet 55 Cnc e is an unusually close-in super-Earth, whose transits have allowed for detailed follow-up studies. Recent observations favor the presence of a substantial atmosphere yet its composition, and the nature of the planet, remain unknown. We combined our derived planet mass (Mp = 8.0 ± 0.3 MEarth) with refined measurement of its optical radius derived from HST/STIS observations (Rp = 1.88 ± 0.03 REarth over 530–750 nm) to revise the density of 55 Cnc e (ρ = 6.7 ± 0.4 g cm−3). Based on these revised properties we have characterized possible interiors of 55 Cnc e using a generalized Bayesian model. We confirm that the planet is likely surrounded by a heavyweight atmosphere, contributing a few percents of the planet radius. While we cannot exclude the presence of a water layer underneath the atmosphere, this scenario is unlikely given the observations of the planet across the entire spectrum and its strong irradiation. Follow-up observations of the system in photometry and in spectroscopy over different time-scales are needed to further investigate the nature and origin of this iconic super-Earth.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

11 downloads since deposited on 06 Mar 2019
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Uncontrolled Keywords:Space and Planetary Science, Astronomy and Astrophysics
Language:English
Date:1 November 2018
Deposited On:06 Mar 2019 15:56
Last Modified:17 Sep 2019 20:09
Publisher:EDP Sciences
ISSN:0004-6361
Additional Information:© ESO
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1051/0004-6361/201833154

Download

Download PDF  'The 55 Cancri system reassessed'.
Preview
Content: Published Version
Filetype: PDF
Size: 5MB
View at publisher