Header

UZH-Logo

Maintenance Infos

Fitness Consequences of Female Alternative Reproductive Tactics in House Mice (Mus musculus domesticus)


Ferrari, Manuela; Lindholm, Anna K; König, Barbara (2019). Fitness Consequences of Female Alternative Reproductive Tactics in House Mice (Mus musculus domesticus). American Naturalist, 193(1):106-124.

Abstract

Alternative reproductive tactics (ARTs) are defined as discrete differences in morphological, physiological, and/or behavioral traits associated with reproduction that occur within the same sex and population. House mice provide a rare example of ARTs in females, which can rear their young either solitarily or together with one or several other females in a communal nest. We assessed the fitness consequences of communal and solitary breeding in a wild population to understand how the two tactics can be evolutionarily stable. Females switched between the two tactics (with more than 50% of all females having two or more litters using both tactics), pointing toward communal and solitary breeding being two tactics within a single strategy and not two genetically determined strategies. Communal breeding resulted in reduced pup survival and negatively impacted female reproductive success. Older and likely heavier females more often reared their litters solitarily, indicating that females use a condition-dependent strategy. Solitary breeding seems the more successful tactic, and only younger and likely less competitive females might opt for communal nursing, even at the cost of increased pup mortality. This study emphasizes the importance of analyzing phenotypic plasticity and its role in cooperation in the context of female ARTs.

Abstract

Alternative reproductive tactics (ARTs) are defined as discrete differences in morphological, physiological, and/or behavioral traits associated with reproduction that occur within the same sex and population. House mice provide a rare example of ARTs in females, which can rear their young either solitarily or together with one or several other females in a communal nest. We assessed the fitness consequences of communal and solitary breeding in a wild population to understand how the two tactics can be evolutionarily stable. Females switched between the two tactics (with more than 50% of all females having two or more litters using both tactics), pointing toward communal and solitary breeding being two tactics within a single strategy and not two genetically determined strategies. Communal breeding resulted in reduced pup survival and negatively impacted female reproductive success. Older and likely heavier females more often reared their litters solitarily, indicating that females use a condition-dependent strategy. Solitary breeding seems the more successful tactic, and only younger and likely less competitive females might opt for communal nursing, even at the cost of increased pup mortality. This study emphasizes the importance of analyzing phenotypic plasticity and its role in cooperation in the context of female ARTs.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

27 downloads since deposited on 15 Mar 2019
27 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:January 2019
Deposited On:15 Mar 2019 08:50
Last Modified:25 Sep 2019 00:24
Publisher:University of Chicago Press
ISSN:0003-0147
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1086/700567
PubMed ID:30624110

Download

Download PDF  'Fitness Consequences of Female Alternative Reproductive Tactics in House Mice (Mus musculus domesticus)'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)