Header

UZH-Logo

Maintenance Infos

Synthesis and Biological Evaluation of the Novel Growth Inhibitor Streptol Glucoside, Isolated from an Obligate Plant Symbiont


Hsiao, Chien-Chi; Sieber, Simon; Georgiou, Antri; Bailly, Aurélien; Emmanouilidou, Despina; Carlier, Aurélien; Eberl, Leo; Gademann, Karl (2019). Synthesis and Biological Evaluation of the Novel Growth Inhibitor Streptol Glucoside, Isolated from an Obligate Plant Symbiont. Chemistry - A European Journal, 25(7):1722-1726.

Abstract

The plant Psychotria kirkii hosts an obligatory bacterial symbiont, Candidatus Burkholderia kirkii, in nodules on their leaves. Recently, a glucosylated derivative of (+)-streptol, (+)-streptol glucoside, was isolated from the nodulated leaves and was found to possess a plant growth inhibitory activity. To establish a structure-activity relationship study, a convergent strategy was developed to obtain several pseudosugars from a single synthetic precursor. Furthermore, the glucosylation of streptol was investigated in detail and conditions affording specifically the α or β glucosidic anomer were identified. Although (+)-streptol was the most active compound, its concentration in P. kirkii plant leaves extract was approximately ten-fold lower than that of (+)-streptol glucoside. These results provide compelling evidence that the glucosylation of (+)-streptol protects the plant host against the growth inhibitory effect of the compound, which might constitute a molecular cornerstone for this successful plant-bacteria symbiosis.

Abstract

The plant Psychotria kirkii hosts an obligatory bacterial symbiont, Candidatus Burkholderia kirkii, in nodules on their leaves. Recently, a glucosylated derivative of (+)-streptol, (+)-streptol glucoside, was isolated from the nodulated leaves and was found to possess a plant growth inhibitory activity. To establish a structure-activity relationship study, a convergent strategy was developed to obtain several pseudosugars from a single synthetic precursor. Furthermore, the glucosylation of streptol was investigated in detail and conditions affording specifically the α or β glucosidic anomer were identified. Although (+)-streptol was the most active compound, its concentration in P. kirkii plant leaves extract was approximately ten-fold lower than that of (+)-streptol glucoside. These results provide compelling evidence that the glucosylation of (+)-streptol protects the plant host against the growth inhibitory effect of the compound, which might constitute a molecular cornerstone for this successful plant-bacteria symbiosis.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 15 Mar 2019
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:9 January 2019
Deposited On:15 Mar 2019 10:23
Last Modified:31 Oct 2019 14:45
Publisher:Wiley-VCH Verlag
ISSN:0947-6539
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/chem.201805693
PubMed ID:30508325

Download

Closed Access: Download allowed only for UZH members