Header

UZH-Logo

Maintenance Infos

Analysis of Staphylococcus aureus wall teichoic acid glycoepitopes by Fourier Transform Infrared Spectroscopy provides novel insights into the staphylococcal glycocode


Grunert, Tom; Jovanovic, D; Sirisarn, W; Johler, Sophia; Weidenmaier, Christopher; Ehling-Schulz, Monika; Xia, Guoqing (2018). Analysis of Staphylococcus aureus wall teichoic acid glycoepitopes by Fourier Transform Infrared Spectroscopy provides novel insights into the staphylococcal glycocode. Scientific Reports, 8(1):1889.

Abstract

Surface carbohydrate moieties are essential for bacterial communication, phage-bacteria and host-pathogen interaction. Most Staphylococcus aureus produce polyribitolphosphate type Wall teichoic acids (WTAs) substituted with α- and/or β-O-linked N-acetyl-glucosamine (α-/β-O-GlcNAc) residues. GlcNAc modifications have attracted particular interest, as they were shown to govern staphylococcal adhesion to host cells, to promote phage susceptibility conferring beta-lactam resistance and are an important target for antimicrobial agents and vaccines. However, there is a lack of rapid, reliable, and convenient methods to detect and quantify these sugar residues. Whole cell Fourier transform infrared (FTIR) spectroscopy could meet these demands and was employed to analyse WTAs and WTA glycosylation in S. aureus. Using S. aureus mutants, we found that a complete loss of WTA expression resulted in strong FTIR spectral perturbations mainly related to carbohydrates and phosphorus-containing molecules. We could demonstrate that α- or β-O-GlcNAc WTA substituents can be clearly differentiated by chemometrically assisted FTIR spectroscopy. Our results suggest that whole cell FTIR spectroscopy represents a powerful and reliable method for large scale analysis of WTA glycosylation, thus opening up a complete new range of options for deciphering the staphylococcal pathogenesis related glycocode

Abstract

Surface carbohydrate moieties are essential for bacterial communication, phage-bacteria and host-pathogen interaction. Most Staphylococcus aureus produce polyribitolphosphate type Wall teichoic acids (WTAs) substituted with α- and/or β-O-linked N-acetyl-glucosamine (α-/β-O-GlcNAc) residues. GlcNAc modifications have attracted particular interest, as they were shown to govern staphylococcal adhesion to host cells, to promote phage susceptibility conferring beta-lactam resistance and are an important target for antimicrobial agents and vaccines. However, there is a lack of rapid, reliable, and convenient methods to detect and quantify these sugar residues. Whole cell Fourier transform infrared (FTIR) spectroscopy could meet these demands and was employed to analyse WTAs and WTA glycosylation in S. aureus. Using S. aureus mutants, we found that a complete loss of WTA expression resulted in strong FTIR spectral perturbations mainly related to carbohydrates and phosphorus-containing molecules. We could demonstrate that α- or β-O-GlcNAc WTA substituents can be clearly differentiated by chemometrically assisted FTIR spectroscopy. Our results suggest that whole cell FTIR spectroscopy represents a powerful and reliable method for large scale analysis of WTA glycosylation, thus opening up a complete new range of options for deciphering the staphylococcal pathogenesis related glycocode

Statistics

Citations

Dimensions.ai Metrics
12 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

20 downloads since deposited on 12 Feb 2019
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Food Safety and Hygiene
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Health Sciences > Multidisciplinary
Language:English
Date:2018
Deposited On:12 Feb 2019 12:07
Last Modified:11 May 2020 18:44
Publisher:Nature Publishing Group
ISSN:2045-2322
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s41598-018-20222-6
PubMed ID:29382892

Download

Gold Open Access

Download PDF  'Analysis of Staphylococcus aureus wall teichoic acid glycoepitopes by Fourier Transform Infrared Spectroscopy provides novel insights into the staphylococcal glycocode'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)