Header

UZH-Logo

Maintenance Infos

Origin context of trait data matters for predictions of community performance in a grassland biodiversity experiment


Roscher, Christiane; Schumacher, Jens; Gubsch, Marlén; Lipowsky, Annett; Weigelt, Alexandra; Buchmann, Nina; Schmid, Bernhard; Schulze, Ernst‐Detlef (2018). Origin context of trait data matters for predictions of community performance in a grassland biodiversity experiment. Ecology, 99(5):1214-1226.

Abstract

Plant functional traits may explain the positive relationship between species richness and ecosystem functioning, but species‐level trait variation in response to growth conditions is often ignored in trait‐based predictions of community performance. In a large grassland biodiversity experiment (Jena Experiment), we measured traits on plants grown as solitary individuals, in monocultures or in mixtures. We calculated two measures of community‐level trait composition, i.e., community‐weighted mean traits (CWM) and trait diversity (Rao's quadratic entropy; FD) based on different contexts in which traits were measured (trait origins). CWM and FD values of the different measurement origins were then compared regarding their power to predict community biomass production and biodiversity effects quantified with the additive partitioning method. Irrespective of trait origin, models combining CWM and FD values as predictors best explained community biomass and biodiversity effects. CWM values based on monoculture, mixture‐mean or community‐specific trait data were similarly powerful predictors, but predictions became worse when trait values originated from solitary‐grown individuals. FD values based on monoculture traits were the best predictors of community biomass and net biodiversity effects, while FD values based on community‐specific traits were the best predictors for complementarity and selection effects. Traits chosen as best CWM predictors were not strongly affected by trait origin but traits chosen as best FD predictors varied strongly dependent on trait origin and altered the predictability of community performance. We conclude that by adjusting their functional traits to species richness and even specific community compositions, plants can change community‐level trait compositions, thereby also changing community biomass production and biodiversity effects. Incorporation of these plastic trait adjustments of plants in trait‐based ecology can improve its predictive power in explaining biodiversity–ecosystem functioning relationships.

Abstract

Plant functional traits may explain the positive relationship between species richness and ecosystem functioning, but species‐level trait variation in response to growth conditions is often ignored in trait‐based predictions of community performance. In a large grassland biodiversity experiment (Jena Experiment), we measured traits on plants grown as solitary individuals, in monocultures or in mixtures. We calculated two measures of community‐level trait composition, i.e., community‐weighted mean traits (CWM) and trait diversity (Rao's quadratic entropy; FD) based on different contexts in which traits were measured (trait origins). CWM and FD values of the different measurement origins were then compared regarding their power to predict community biomass production and biodiversity effects quantified with the additive partitioning method. Irrespective of trait origin, models combining CWM and FD values as predictors best explained community biomass and biodiversity effects. CWM values based on monoculture, mixture‐mean or community‐specific trait data were similarly powerful predictors, but predictions became worse when trait values originated from solitary‐grown individuals. FD values based on monoculture traits were the best predictors of community biomass and net biodiversity effects, while FD values based on community‐specific traits were the best predictors for complementarity and selection effects. Traits chosen as best CWM predictors were not strongly affected by trait origin but traits chosen as best FD predictors varied strongly dependent on trait origin and altered the predictability of community performance. We conclude that by adjusting their functional traits to species richness and even specific community compositions, plants can change community‐level trait compositions, thereby also changing community biomass production and biodiversity effects. Incorporation of these plastic trait adjustments of plants in trait‐based ecology can improve its predictive power in explaining biodiversity–ecosystem functioning relationships.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

19 downloads since deposited on 08 Mar 2019
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Ecology, Evolution, Behavior and Systematics
Language:English
Date:1 May 2018
Deposited On:08 Mar 2019 10:15
Last Modified:08 Mar 2019 10:17
Publisher:Ecological Society of America
ISSN:0012-9658
Additional Information:Copyright by the Ecological Society of America
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/ecy.2216

Download

Download PDF  'Origin context of trait data matters for predictions of community performance in a grassland biodiversity experiment'.
Preview
Content: Published Version
Filetype: PDF
Size: 311kB
View at publisher