Header

UZH-Logo

Maintenance Infos

The interacting effects of forestry and climate change on the demography of a group-living bird population


Layton-Matthews, Kate; Ozgul, Arpat; Griesser, Michael (2018). The interacting effects of forestry and climate change on the demography of a group-living bird population. Oecologia, 186(4):907-918.

Abstract

Anthropogenic degradation of natural habitats is a global driver of wildlife population declines. Local population responses to such environmental perturbations are generally well understood, but in socially structured populations, interactions between environmental and social factors may influence population responses. Thus, understanding how habitat degradation affects the dynamics of these populations requires simultaneous consideration of social and environmental mechanisms underlying demographic responses. Here we investigated the effect of habitat degradation through commercial forestry on spatiotemporal dynamics of a group-living bird, the Siberian jay, Perisoreus infaustus, in boreal forests of northern Sweden. We assessed the interacting effects of forestry, climate and population density on stage-specific, seasonal life-history rates and population dynamics, using long-term, individual-based demographic data from 70 territories in natural and managed forests. Stage-specific survival and reproductive rates, and consequently population growth, were lower in managed forests than in natural forests. Population growth was most sensitive to breeder survival and was more sensitive to early dispersing juveniles than those delaying dispersal. Forestry decreased population growth in managed forests by reducing reproductive success and breeder survival. Increased snow depth improved winter survival, and warmer spring temperatures enhanced reproductive success, particularly in natural forests. Population growth was stable in natural forests but it was declining in managed forests, and this difference accelerated under forecasted climate scenarios. Thus, climatic change could exacerbate the rate of forestry-induced population decline through reduced snow cover in our study species, and in other species with similar life-history characteristics and habitat requirements.

Abstract

Anthropogenic degradation of natural habitats is a global driver of wildlife population declines. Local population responses to such environmental perturbations are generally well understood, but in socially structured populations, interactions between environmental and social factors may influence population responses. Thus, understanding how habitat degradation affects the dynamics of these populations requires simultaneous consideration of social and environmental mechanisms underlying demographic responses. Here we investigated the effect of habitat degradation through commercial forestry on spatiotemporal dynamics of a group-living bird, the Siberian jay, Perisoreus infaustus, in boreal forests of northern Sweden. We assessed the interacting effects of forestry, climate and population density on stage-specific, seasonal life-history rates and population dynamics, using long-term, individual-based demographic data from 70 territories in natural and managed forests. Stage-specific survival and reproductive rates, and consequently population growth, were lower in managed forests than in natural forests. Population growth was most sensitive to breeder survival and was more sensitive to early dispersing juveniles than those delaying dispersal. Forestry decreased population growth in managed forests by reducing reproductive success and breeder survival. Increased snow depth improved winter survival, and warmer spring temperatures enhanced reproductive success, particularly in natural forests. Population growth was stable in natural forests but it was declining in managed forests, and this difference accelerated under forecasted climate scenarios. Thus, climatic change could exacerbate the rate of forestry-induced population decline through reduced snow cover in our study species, and in other species with similar life-history characteristics and habitat requirements.

Statistics

Citations

Dimensions.ai Metrics
5 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Language:English
Date:1 April 2018
Deposited On:08 Mar 2019 10:24
Last Modified:29 Jul 2020 10:17
Publisher:Springer
ISSN:0029-8549
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s00442-018-4100-z

Download

Full text not available from this repository.
View at publisher

Get full-text in a library