Header

UZH-Logo

Maintenance Infos

Multi-channel attention for end-to-end speech recognition


Braun, S; Neil, D; Anumula, Jithendar; Ceolini, Enea; Liu, S-C (2018). Multi-channel attention for end-to-end speech recognition. In: Interspeech 2018, Hyderabad, India, 2 September 2018 - 6 September 2018. ISCA, 17-21.

Statistics

Citations

Dimensions.ai Metrics
12 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

309 downloads since deposited on 15 Feb 2019
93 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Speech), refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Social Sciences & Humanities > Language and Linguistics
Physical Sciences > Human-Computer Interaction
Physical Sciences > Signal Processing
Physical Sciences > Software
Physical Sciences > Modeling and Simulation
Language:English
Event End Date:6 September 2018
Deposited On:15 Feb 2019 15:35
Last Modified:09 Jun 2022 07:04
Publisher:ISCA
OA Status:Green
Publisher DOI:https://doi.org/10.21437/Interspeech.2018-1301
Official URL:https://www.isca-speech.org/archive/pdfs/interspeech_2018/braun18_interspeech.pdf

Download

Green Open Access

Download PDF  'Multi-channel attention for end-to-end speech recognition'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher