Header

UZH-Logo

Maintenance Infos

A neuromorphic systems approach to in-memory computing with non-ideal memristive devices: from mitigation to exploitation


Payvand, Melika; Nair, Manu V; Müller, Lorenz K; Indiveri, Giacomo (2019). A neuromorphic systems approach to in-memory computing with non-ideal memristive devices: from mitigation to exploitation. Faraday Discussions, 213:487-510.

Abstract

Memristive devices represent a promising technology for building neuromorphic electronic systems. In addition to their compactness and non-volatility, they are characterized by their computationally relevant physical properties, such as their state-dependence, non-linear conductance changes, and intrinsic variability in both their switching threshold and conductance values, that make them ideal devices for emulating the bio-physics of real synapses. In this paper we present a spiking neural network architecture that supports the use of memristive devices as synaptic elements and propose mixed-signal analog-digital interfacing circuits that mitigate the effect of variability in their conductance values and exploit their variability in the switching threshold for implementing stochastic learning. The effect of device variability is mitigated using pairs of memristive devices configured in a complementary push–pull mechanism and interfaced to a current-mode normalizer circuit. The stochastic learning mechanism is obtained by mapping the desired change in synaptic weight into a corresponding switching probability that is derived from the intrinsic stochastic behavior of memristive devices. We demonstrate the features of the CMOS circuits and apply the architecture proposed to a standard neural network hand-written digit classification benchmark based on the MNIST data-set. We evaluate the performance of the approach proposed in this benchmark using behavioral-level spiking neural network simulation, showing both the effect of the reduction in conductance variability produced by the current-mode normalizer circuit and the increase in performance as a function of the number of memristive devices used in each synapse.

Abstract

Memristive devices represent a promising technology for building neuromorphic electronic systems. In addition to their compactness and non-volatility, they are characterized by their computationally relevant physical properties, such as their state-dependence, non-linear conductance changes, and intrinsic variability in both their switching threshold and conductance values, that make them ideal devices for emulating the bio-physics of real synapses. In this paper we present a spiking neural network architecture that supports the use of memristive devices as synaptic elements and propose mixed-signal analog-digital interfacing circuits that mitigate the effect of variability in their conductance values and exploit their variability in the switching threshold for implementing stochastic learning. The effect of device variability is mitigated using pairs of memristive devices configured in a complementary push–pull mechanism and interfaced to a current-mode normalizer circuit. The stochastic learning mechanism is obtained by mapping the desired change in synaptic weight into a corresponding switching probability that is derived from the intrinsic stochastic behavior of memristive devices. We demonstrate the features of the CMOS circuits and apply the architecture proposed to a standard neural network hand-written digit classification benchmark based on the MNIST data-set. We evaluate the performance of the approach proposed in this benchmark using behavioral-level spiking neural network simulation, showing both the effect of the reduction in conductance variability produced by the current-mode normalizer circuit and the increase in performance as a function of the number of memristive devices used in each synapse.

Statistics

Citations

Dimensions.ai Metrics
19 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Physical Sciences > Physical and Theoretical Chemistry
Language:English
Date:February 2019
Deposited On:08 Mar 2019 16:19
Last Modified:03 Jul 2021 12:36
Publisher:Royal Society of Chemistry
Series Name:Faraday Discussions
ISSN:1359-6640
OA Status:Closed
Publisher DOI:https://doi.org/10.1039/C8FD00114F
Official URL:https://pubs.rsc.org/en/content/articlehtml/2018/fd/c8fd00114f

Download

Full text not available from this repository.
View at publisher

Get full-text in a library