Header

UZH-Logo

Maintenance Infos

An experimental genetically attenuated live vaccine to prevent transmission of Toxoplasma gondii by cats


Ramakrishnan, Chandra; Maier, Simone; Walker, Robert A; Rehrauer, Hubert; Joekel, Deborah E; Winiger, Rahel R; Basso, Walter U; Grigg, Michael E; Hehl, Adrian B; Deplazes, Peter; Smith, Nicholas C (2019). An experimental genetically attenuated live vaccine to prevent transmission of Toxoplasma gondii by cats. Scientific Reports, 9(1):1474.

Abstract

Almost any warm-blooded creature can be an intermediate host for Toxoplasma gondii. However, sexual reproduction of T. gondii occurs only in felids, wherein fertilisation of haploid macrogametes by haploid microgametes, results in diploid zygotes, around which a protective wall develops, forming unsporulated oocysts. Unsporulated oocysts are shed in the faeces of cats and meiosis gives rise to haploid sporozoites within the oocysts. These, now infectious, sporulated oocysts contaminate the environment as a source of infection for people and their livestock. RNA-Seq analysis of cat enteric stages of T. gondii uncovered genes expressed uniquely in microgametes and macrogametes. A CRISPR/Cas9 strategy was used to create a T. gondii strain that exhibits defective fertilisation, decreased fecundity and generates oocysts that fail to produce sporozoites. Inoculation of cats with this engineered parasite strain totally prevented oocyst excretion following infection with wild-type T. gondii, demonstrating that this mutant is an attenuated, live, transmission-blocking vaccine.

Abstract

Almost any warm-blooded creature can be an intermediate host for Toxoplasma gondii. However, sexual reproduction of T. gondii occurs only in felids, wherein fertilisation of haploid macrogametes by haploid microgametes, results in diploid zygotes, around which a protective wall develops, forming unsporulated oocysts. Unsporulated oocysts are shed in the faeces of cats and meiosis gives rise to haploid sporozoites within the oocysts. These, now infectious, sporulated oocysts contaminate the environment as a source of infection for people and their livestock. RNA-Seq analysis of cat enteric stages of T. gondii uncovered genes expressed uniquely in microgametes and macrogametes. A CRISPR/Cas9 strategy was used to create a T. gondii strain that exhibits defective fertilisation, decreased fecundity and generates oocysts that fail to produce sporozoites. Inoculation of cats with this engineered parasite strain totally prevented oocyst excretion following infection with wild-type T. gondii, demonstrating that this mutant is an attenuated, live, transmission-blocking vaccine.

Statistics

Citations

Altmetrics

Downloads

9 downloads since deposited on 19 Feb 2019
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
05 Vetsuisse Faculty > Institute of Parasitology
04 Faculty of Medicine > Institute of Parasitology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
600 Technology
Uncontrolled Keywords:Multidisciplinary
Language:English
Date:February 2019
Deposited On:19 Feb 2019 12:04
Last Modified:01 Mar 2019 01:10
Publisher:Nature Publishing Group
ISSN:2045-2322
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s41598-018-37671-8
PubMed ID:30728393

Download

Download PDF  'An experimental genetically attenuated live vaccine to prevent transmission of Toxoplasma gondii by cats'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)