Header

UZH-Logo

Maintenance Infos

Release of choline in the isolated heart, an indicator of ischemic phospholipid degradation and its protection by ischemic preconditioning: No evidence for a role of phospholipase D


Brühl, Annette; Hafner, Gerd; Löffelholz, Konrad (2004). Release of choline in the isolated heart, an indicator of ischemic phospholipid degradation and its protection by ischemic preconditioning: No evidence for a role of phospholipase D. Life Sciences, 75(13):1609-1620.

Abstract

The release of choline as a water-soluble product of phospholipid hydrolysis was measured in the perfusate of rat hearts to monitor ischemic membrane degradation and its protection by ischemic preconditioning (IPC). Hearts were subjected to global ischemia (GI; 30 min of no-flow) followed by 60 min of reperfusion. To induce IPC, GI was preceded by four no-flow episodes of 5 min each. Deleterious consequences of GI and reperfusion, namely coronary flow reduction, incidence of arrhythmias and release of cardiac troponin T, were significantly attenuated by IPC. The release of choline increased during reperfusion in a biphasic manner: a first phase peaked immediately after GI and was followed by a second, delayed phase indicating choline release caused during reperfusion. Only the second phase was blocked by both IPC and by AACOCF3 (5 microM), an inhibitor of cytosolic phospholipase A2. The activity of phospholipase D (PLD) was unchanged after GI or IPC or GI plus IPC. In conclusion, choline release into heart perfusate was found to be a useful real-time indicator of phospholipid degradation caused by GI and by reperfusion and its protection by IPC. The results supplement previous observations on the accumulation of fatty acids in the phospholipid pool. There was no evidence for PLD activation by GI or IPC.

Abstract

The release of choline as a water-soluble product of phospholipid hydrolysis was measured in the perfusate of rat hearts to monitor ischemic membrane degradation and its protection by ischemic preconditioning (IPC). Hearts were subjected to global ischemia (GI; 30 min of no-flow) followed by 60 min of reperfusion. To induce IPC, GI was preceded by four no-flow episodes of 5 min each. Deleterious consequences of GI and reperfusion, namely coronary flow reduction, incidence of arrhythmias and release of cardiac troponin T, were significantly attenuated by IPC. The release of choline increased during reperfusion in a biphasic manner: a first phase peaked immediately after GI and was followed by a second, delayed phase indicating choline release caused during reperfusion. Only the second phase was blocked by both IPC and by AACOCF3 (5 microM), an inhibitor of cytosolic phospholipase A2. The activity of phospholipase D (PLD) was unchanged after GI or IPC or GI plus IPC. In conclusion, choline release into heart perfusate was found to be a useful real-time indicator of phospholipid degradation caused by GI and by reperfusion and its protection by IPC. The results supplement previous observations on the accumulation of fatty acids in the phospholipid pool. There was no evidence for PLD activation by GI or IPC.

Statistics

Citations

Dimensions.ai Metrics
22 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Psychiatry, Psychotherapy, and Psychosomatics
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Pharmacology, Toxicology and Pharmaceutics
Language:English
Date:2004
Deposited On:23 May 2019 11:08
Last Modified:31 Jul 2020 03:14
Publisher:Elsevier
ISSN:0024-3205
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.lfs.2004.03.019

Download

Full text not available from this repository.
View at publisher

Get full-text in a library